scispace - formally typeset
Search or ask a question
Author

Chih Wu

Other affiliations: Academy of Engineering
Bio: Chih Wu is an academic researcher from United States Naval Academy. The author has contributed to research in topics: Coefficient of performance & Heat transfer. The author has an hindex of 48, co-authored 222 publications receiving 7683 citations. Previous affiliations of Chih Wu include Academy of Engineering.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reviewed the state-of-the-art of finite time thermodynamic theory and applications from the point of view of both physics and engineering, focusing on the performance optimization of thermodynamic processes and devices with finite-time and/or finite-size constraints.
Abstract: Abstract The historical background, research development, and the state-of-the-art of finite time thermodynamic theory and applications are reviewed from the point of view of both physics and engineering. The emphasis is on the performance optimization of thermodynamic processes and devices with finite-time and/or finite-size constraints, including heat engines, refrigerators, heat pumps, chemical reactions and some other processes, with respect to the following aspects: the study of Newton's law systems, an analysis of the effect of heat resistance and other irreversible loss models on the performance, an analysis of the effect of heat reservoir models on the performance, as well as the application for real thermodynamic processes and devices. It is pointed out that the generalized thermodynamic optimization theory is the development direction of finite thermodynamics in the future.

716 citations

Journal ArticleDOI
TL;DR: In this paper, a real thermoelectric power generator utilizing waste heat is proposed, where the generator is treated as an external and internal irreversible heat engine and the specific power output is analyzed and compared with that of the Carnot, endoreversible and external reversible heat engines.

160 citations

Journal ArticleDOI
TL;DR: In this article, a model of a two-stage semiconductor thermoelectric-generator with external heat-transfer is built, and performance of the generator, assuming Newton's heat transfer law applies, is analyzed using a combination of finite-time thermodynamics and non-equilibrium thermodynamics.

143 citations

Journal ArticleDOI
TL;DR: In this article, the power output and efficiency expressions for thermoelectric (semiconductor) generators which are composed of multi-elements are derived with considerations of heat transfer irreversibility in the heat exchangers between the generator and the heat reservoirs.

125 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a generalized irreversible heat engine model that incorporates several internal irreversibilities, such as heat leak, friction, turbulence etc., and derived the relation between optimal power output and efficiency based on a generalized heat transfer law.
Abstract: In a classical endoreversible Carnot engine model, irreversibility in the form of heat resistance between the reversible Carnot cycle and its heat reservoirs is taken into account. This paper presents a generalized irreversible Carnot engine model that incorporates several internal irreversibilities, such as heat leak, friction, turbulence etc. These added irreversibilities are characterized by a constant parameter and a constant coefficient. The relation between optimal power output and efficiency is derived based on a generalized heat transfer law . The effect of heat leakage, internal irreversibility and heat transfer law on the optimal performance of the generalized irreversible heat engine is investigated.

117 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of electrical energy storage technologies for stationary applications is presented, with particular attention paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage and thermal energy storage.
Abstract: Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage, flywheel, capacitor/supercapacitor, and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics, applications and deployment status.

3,031 citations

Journal ArticleDOI
TL;DR: The recent literature concerning the magnetocaloric effect (MCE) has been reviewed and correlations have been made comparing the behaviours of the different families of magnetic materials which exhibit large or unusual MCE values.
Abstract: The recent literature concerning the magnetocaloric effect (MCE) has been reviewed. The MCE properties have been compiled and correlations have been made comparing the behaviours of the different families of magnetic materials which exhibit large or unusual MCE values. These families include: the lanthanide (R) Laves phases (RM2, where M = Al, Co and Ni), Gd5(Si1−xGex)4 ,M n(As1−xSbx), MnFe(P1−xAsx), La(Fe13−xSix) and their hydrides and the manganites (R1−xMxMnO3, where R = lanthanide and M = Ca, Sr and Ba). The potential for use of these materials in magnetic refrigeration is discussed, including a comparison with Gd as a near room temperature active magnetic regenerator material. (Some figures in this article are in colour only in the electronic version)

3,002 citations

Journal ArticleDOI
TL;DR: Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.
Abstract: Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation–dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production. (Some figures may appear in colour only in the online journal) This article was invited by Erwin Frey.

2,834 citations

Journal ArticleDOI
TL;DR: Entropy generation minimization (finite time thermodynamics, or thermodynamic optimization) is the method that combines into simple models the most basic concepts of heat transfer, fluid mechanics, and thermodynamics as mentioned in this paper.
Abstract: Entropy generation minimization (finite time thermodynamics, or thermodynamic optimization) is the method that combines into simple models the most basic concepts of heat transfer, fluid mechanics, and thermodynamics. These simple models are used in the optimization of real (irreversible) devices and processes, subject to finite‐size and finite‐time constraints. The review traces the development and adoption of the method in several sectors of mainstream thermal engineering and science: cryogenics, heat transfer, education, storage systems, solar power plants, nuclear and fossil power plants, and refrigerators. Emphasis is placed on the fundamental and technological importance of the optimization method and its results, the pedagogical merits of the method, and the chronological development of the field.

1,516 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an update on recent developments in heat pump systems, and is intended to be a "one-stop" archive of known practical heat pump solutions.

737 citations