scispace - formally typeset
Search or ask a question
Author

Chikkannan Eswaran

Bio: Chikkannan Eswaran is an academic researcher from Multimedia University. The author has contributed to research in topics: Digital filter & Artificial neural network. The author has an hindex of 22, co-authored 111 publications receiving 2287 citations. Previous affiliations of Chikkannan Eswaran include Indian Institute of Technology Madras & Indian Institutes of Technology.


Papers
More filters
Journal ArticleDOI
01 May 2007
TL;DR: ApEn is used for the first time in the proposed system for the detection of epilepsy using neural networks and it is shown that the overall accuracy values as high as 100% can be achieved by using the proposed systems.
Abstract: The electroencephalogram (EEG) signal plays an important role in the diagnosis of epilepsy. The EEG recordings of the ambulatory recording systems generate very lengthy data and the detection of the epileptic activity requires a time-consuming analysis of the entire length of the EEG data by an expert. The traditional methods of analysis being tedious, many automated diagnostic systems for epilepsy have emerged in recent years. This paper proposes a neural-network-based automated epileptic EEG detection system that uses approximate entropy (ApEn) as the input feature. ApEn is a statistical parameter that measures the predictability of the current amplitude values of a physiological signal based on its previous amplitude values. It is known that the value of the ApEn drops sharply during an epileptic seizure and this fact is used in the proposed system. Two different types of neural networks, namely, Elman and probabilistic neural networks, are considered in this paper. ApEn is used for the first time in the proposed system for the detection of epilepsy using neural networks. It is shown that the overall accuracy values as high as 100% can be achieved by using the proposed system

542 citations

Journal ArticleDOI
TL;DR: Experimental results show that Elman network yields epileptic detection accuracy rates as high as 99.6% with a single input feature which is better than the results obtained by using other types of neural networks with two and more input features.
Abstract: Electroencephalogram (EEG) signal plays an important role in the diagnosis of epilepsy. The long-term EEG recordings of an epileptic patient obtained from the ambulatory recording systems contain a large volume of EEG data. Detection of the epileptic activity requires a time consuming analysis of the entire length of the EEG data by an expert. The traditional methods of analysis being tedious, many automated diagnostic systems for epilepsy have emerged in recent years. This paper discusses an automated diagnostic method for epileptic detection using a special type of recurrent neural network known as Elman network. The experiments are carried out by using time-domain as well as frequency-domain features of the EEG signal. Experimental results show that Elman network yields epileptic detection accuracy rates as high as 99.6% with a single input feature which is better than the results obtained by using other types of neural networks with two and more input features.

400 citations

Journal ArticleDOI
TL;DR: An automated diagnosis system for DR integrated with a user-friendly interface that quantifies the severity level of DR based on detecting and analyzing the early clinical signs associated with the disease, such as microaneurysms (MAs) and hemorrhages (HAs).
Abstract: Diabetic retinopathy (DR) has become a serious threat in our society, which causes 45% of the legal blindness in diabetes patients. Early detection as well as the periodic screening of DR helps in reducing the progress of this disease and in preventing the subsequent loss of visual capability. This paper provides an automated diagnosis system for DR integrated with a user-friendly interface. The grading of the severity level of DR is based on detecting and analyzing the early clinical signs associated with the disease, such as microaneurysms (MAs) and hemorrhages (HAs). The system extracts some retinal features, such as optic disc, fovea, and retinal tissue for easier segmentation of dark spot lesions in the fundus images. That is followed by the classification of the correctly segmented spots into MAs and HAs. Based on the number and location of MAs and HAs, the system quantifies the severity level of DR. A database of 98 color images is used in order to evaluate the performance of the developed system. From the experimental results, it is found that the proposed system achieves 84.31% and 87.53% values in terms of sensitivity for the detection of MAs and HAs respectively. In terms of specificity, the system achieves 93.63% and 95.08% values for the detection of MAs and HAs respectively. Also, the proposed system achieves 68.98% and 74.91% values in terms of kappa coefficient for the detection of MAs and HAs respectively. Moreover, the system yields sensitivity and specificity values of 89.47% and 95.65% for the classification of DR versus normal.

105 citations

Journal ArticleDOI
TL;DR: A novel approach to automatically segment the OD and exudates is proposed, which makes use of the green component of the image and preprocessing steps such as average filtering, contrast adjustment, and thresholding.
Abstract: The detection of bright objects such as optic disc (OD) and exudates in color fundus images is an important step in the diagnosis of eye diseases such as diabetic retinopathy and glaucoma. In this paper, a novel approach to automatically segment the OD and exudates is proposed. The proposed algorithm makes use of the green component of the image and preprocessing steps such as average filtering, contrast adjustment, and thresholding. The other processing techniques used are morphological opening, extended maxima operator, minima imposition, and watershed transformation. The proposed algorithm is evaluated using the test images of STARE and DRIVE databases with fixed and variable thresholds. The images drawn by human expert are taken as the reference images. The proposed method yields sensitivity values as high as 96.7%, which are better than the results reported in the literature.

97 citations

Journal ArticleDOI
TL;DR: A neural network based generalized software system is presented for automatic analysis of electrocardiograms (ECGs) and is capable of intuitively diagnosing the disease from the ECG using the knowledge acquired from the training.
Abstract: In this paper, a neural network based generalized software system is presented for automatic analysis of electrocardiograms (ECGs). The proposed system is capable of intuitively diagnosing the disease from the ECG using the knowledge acquired from the training. A modified decision based neural network which converges in a finite amount of time is employed. The training procedure used automatically varies the size of the network. The system is capable of being trained even without an expert's supervision. The physician can correct the network as and when a misclassification occurs, thus making the system less error-prone as time passes. The proposed system has been tested using an ECG data base representing different cardiological conditions such as bundle branch blocks and infarctions. The system is capable of detecting different types of arrhythmias also.

88 citations


Cited by
More filters
Book ChapterDOI
E.R. Davies1
01 Jan 1990
TL;DR: This chapter introduces the subject of statistical pattern recognition (SPR) by considering how features are defined and emphasizes that the nearest neighbor algorithm achieves error rates comparable with those of an ideal Bayes’ classifier.
Abstract: This chapter introduces the subject of statistical pattern recognition (SPR). It starts by considering how features are defined and emphasizes that the nearest neighbor algorithm achieves error rates comparable with those of an ideal Bayes’ classifier. The concepts of an optimal number of features, representativeness of the training data, and the need to avoid overfitting to the training data are stressed. The chapter shows that methods such as the support vector machine and artificial neural networks are subject to these same training limitations, although each has its advantages. For neural networks, the multilayer perceptron architecture and back-propagation algorithm are described. The chapter distinguishes between supervised and unsupervised learning, demonstrating the advantages of the latter and showing how methods such as clustering and principal components analysis fit into the SPR framework. The chapter also defines the receiver operating characteristic, which allows an optimum balance between false positives and false negatives to be achieved.

1,189 citations

Journal ArticleDOI
01 Feb 1986
TL;DR: Wave digital filters (WDFs) as discussed by the authors are modeled after classical filters, preferably in lattice or ladder configurations or generalizations thereof, and have very good properties concerning coefficient accuracy requirements, dynamic range, and especially all aspects of stability under finite-arithmetic conditions.
Abstract: Wave digital filters (WDFs) are modeled after classical filters, preferably in lattice or ladder configurations or generalizations thereof. They have very good properties concerning coefficient accuracy requirements, dynamic range, and especially all aspects of stability under finite-arithmetic conditions. A detailed review of WDF theory is given. For this several goals are set: to offer an introduction for those not familiar with the subject, to stress practical aspects in order to serve as a guide for those wanting to design or apply WDFs, and to give insight into the broad range of aspects of WDF theory and its many relationships with other areas, especially in the signal-processing field. Correspondingly, mathematical analyses are included only if necessary for gaining essential insight, while for all details of more special nature reference is made to existing literature.

937 citations

Journal ArticleDOI
01 Sep 2009
TL;DR: The suitability of the time-frequency ( t-f) analysis to classify EEG segments for epileptic seizures, and several methods for t- f analysis of EEGs are compared.
Abstract: The detection of recorded epileptic seizure activity in EEG segments is crucial for the localization and classification of epileptic seizures. However, since seizure evolution is typically a dynamic and nonstationary process and the signals are composed of multiple frequencies, visual and conventional frequency-based methods have limited application. In this paper, we demonstrate the suitability of the time-frequency ( t-f) analysis to classify EEG segments for epileptic seizures, and we compare several methods for t- f analysis of EEGs. Short-time Fourier transform and several t-f distributions are used to calculate the power spectrum density (PSD) of each segment. The analysis is performed in three stages: 1) t-f analysis and calculation of the PSD of each EEG segment; 2) feature extraction, measuring the signal segment fractional energy on specific t-f windows; and 3) classification of the EEG segment (existence of epileptic seizure or not), using artificial neural networks. The methods are evaluated using three classification problems obtained from a benchmark EEG dataset, and qualitative and quantitative results are presented.

658 citations

Journal ArticleDOI
TL;DR: This review discusses various feature extraction methods and the results of different automated epilepsy stage detection techniques in detail, and briefly presents the various open ended challenges that need to be addressed before a CAD based epilepsy detection system can be set-up in a clinical setting.
Abstract: Epilepsy is an electrophysiological disorder of the brain, characterized by recurrent seizures. Electroencephalogram (EEG) is a test that measures and records the electrical activity of the brain, and is widely used in the detection and analysis of epileptic seizures. However, it is often difficult to identify subtle but critical changes in the EEG waveform by visual inspection, thus opening up a vast research area for biomedical engineers to develop and implement several intelligent algorithms for the identification of such subtle changes. Moreover, the EEG signals are nonlinear and non-stationary in nature, which contribute to further complexities related to their manual interpretation and detection of normal and abnormal (interictal and ictal) activities. Hence, it is necessary to develop a Computer Aided Diagnostic (CAD) system to automatically identify the normal and abnormal activities using minimum number of highly discriminating features in classifiers. It has been found that nonlinear features are able to capture the complex physiological phenomena such as abrupt transitions and chaotic behavior in the EEG signals. In this review, we discuss various feature extraction methods and the results of different automated epilepsy stage detection techniques in detail. We also briefly present the various open ended challenges that need to be addressed before a CAD based epilepsy detection system can be set-up in a clinical setting.

601 citations

Posted Content
TL;DR: An exhaustive review of the research conducted in neuromorphic computing since the inception of the term is provided to motivate further work by illuminating gaps in the field where new research is needed.
Abstract: Neuromorphic computing has come to refer to a variety of brain-inspired computers, devices, and models that contrast the pervasive von Neumann computer architecture This biologically inspired approach has created highly connected synthetic neurons and synapses that can be used to model neuroscience theories as well as solve challenging machine learning problems The promise of the technology is to create a brain-like ability to learn and adapt, but the technical challenges are significant, starting with an accurate neuroscience model of how the brain works, to finding materials and engineering breakthroughs to build devices to support these models, to creating a programming framework so the systems can learn, to creating applications with brain-like capabilities In this work, we provide a comprehensive survey of the research and motivations for neuromorphic computing over its history We begin with a 35-year review of the motivations and drivers of neuromorphic computing, then look at the major research areas of the field, which we define as neuro-inspired models, algorithms and learning approaches, hardware and devices, supporting systems, and finally applications We conclude with a broad discussion on the major research topics that need to be addressed in the coming years to see the promise of neuromorphic computing fulfilled The goals of this work are to provide an exhaustive review of the research conducted in neuromorphic computing since the inception of the term, and to motivate further work by illuminating gaps in the field where new research is needed

570 citations