scispace - formally typeset
Search or ask a question
Author

Chin H. Chen

Other affiliations: Eastman Kodak Company
Bio: Chin H. Chen is an academic researcher from National Chiao Tung University. The author has contributed to research in topics: OLED & Electroluminescence. The author has an hindex of 41, co-authored 119 publications receiving 8847 citations. Previous affiliations of Chin H. Chen include Eastman Kodak Company.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a stable organic electroluminescent devices based on vapor-deposited Alq thin films have been achieved, which are derived from several factors including: (1) a multilayer thin-film structure with a CuPc stabilized hole-injection contact, (2) a hole-transport diamine layer using a naphthyl substituted benzidine derivative, and (3) an ac drive wave form.
Abstract: Highly stable organic electroluminescent devices based on vapor‐deposited Alq thin films have been achieved. The improvement in stability is derived from several factors including: (1) a multilayer thin‐film structure with a CuPc stabilized hole‐injection contact, (2) a hole‐transport diamine layer using a naphthyl‐substituted benzidine derivative, and (3) an ac drive wave form. These emissive devices have shown an operational half‐lifetime of about 4000 h from an initial luminance of 510 cd/m2.

1,559 citations

Journal ArticleDOI
TL;DR: In this paper, a review is presented on recent progress in organic electroluminescent materials and devices, with emphasis on their material issues pertaining to charge transport, color, and luminance efficiencies.
Abstract: Electroluminescent devices based on organic materials are of considerable interest owing to their attractive characteristics and potential applications to flat panel displays. After a brief overview of the device construction and operating principles, a review is presented on recent progress in organic electroluminescent materials and devices. Small molecular materials are described with emphasis on their material issues pertaining to charge transport, color, and luminance efficiencies. The chemical nature of electrode/organic interfaces and its impact on device performance are then discussed. Particular attention is paid to recent advances in interface engineering that is of paramount importance to modify the chemical and electronic structure of the interface. The topics in this report also include recent development on the enhancement of electron transport capability in organic materials by doping and the increase in luminance efficiency by utilizing electrophosphorescent materials. Of particular interest for the subject of this review are device reliability and its relationship with material characteristics and interface structures. Important issues relating to display fabrication and the status of display development are briefly addressed as well.

1,201 citations

Journal ArticleDOI
TL;DR: In this article, the design and use of vapor-deposited thin-film metal chelates as organic electroluminescent materials for display applications are presented, and material issues pertaining to color, emission efficiencies, and operational are discussed.

671 citations

Journal ArticleDOI
TL;DR: For instance, Peumans, S. R. Forrest, Chem. Phys. Lett. 2005, 87, 021 101 as mentioned in this paper, A. I. Saragi, R. Pudzich, T. Fuhrmann, J. Salbeck, A. Narayan, N. Kumar, and K. Yase, B.-J. Jung.
Abstract: Appl. Phys. Lett. 2002, 80, 1288. [29] P. Peumans, S. R. Forrest, Appl. Phys. Lett. 2001, 79, 126. [30] P. Peumans, S. R. Forrest, Chem. Phys. Lett. 2004, 398, 27. [31] P. Maslak, A. Chopra, J. Am. Chem. Soc. 1993, 115, 9331. [32] C.-L. Lin, H.-W. Lin, C.-C. Wu, Appl. Phys. Lett. 2005, 87, 021 101. [33] A. Rapp, C. Bock, H. Dittmar, K. O. Greulich, J. Photochem. Photobiol., B 2000, 56, 109. [34] T. P. I. Saragi, R. Pudzich, T. Fuhrmann, J. Salbeck, Appl. Phys. Lett. 2004, 84, 2334. [35] Y.-Y. Noh, D.-Y. Kim, Y. Yoshida, K. Yase, B.-J. Jung, E. Lim, H.-K. Shim, Appl. Phys. Lett. 2005, 86, 043 501. [36] K.-S. Narayan, N. Kumar, Appl. Phys. Lett. 2001, 79, 1891.

286 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
Chengliang Wang1, Huanli Dong1, Wenping Hu1, Yunqi Liu1, Daoben Zhu1 
TL;DR: The focus of this review will be on the performance analysis of π-conjugated systems in OFETs, a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals that provide an important insight into the charge transport of ρconjugate systems.
Abstract: Since the discovery of highly conducting polyacetylene by Shirakawa, MacDiarmid, and Heeger in 1977, π-conjugated systems have attracted much attention as futuristic materials for the development and production of the next generation of electronics, that is, organic electronics. Conceptually, organic electronics are quite different from conventional inorganic solid state electronics because the structural versatility of organic semiconductors allows for the incorporation of functionality by molecular design. This versatility leads to a new era in the design of electronic devices. To date, the great number of π-conjugated semiconducting materials that have either been discovered or synthesized generate an exciting library of π-conjugated systems for use in organic electronics. 11 However, some key challenges for further advancement remain: the low mobility and stability of organic semiconductors, the lack of knowledge regarding structure property relationships for understanding the fundamental chemical aspects behind the structural design, and realization of desired properties. Organic field-effect transistors (OFETs) are a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals (drain, source, and gate electrodes). OFETs are not only essential building blocks for the next generation of cheap and flexible organic circuits, but they also provide an important insight into the charge transport of πconjugated systems. Therefore, they act as strong tools for the exploration of the structure property relationships of πconjugated systems, such as parameters of field-effect mobility (μ, the drift velocity of carriers under unit electric field), current on/off ratio (the ratio of the maximum on-state current to the minimum off-state current), and threshold voltage (the minimum gate voltage that is required to turn on the transistor). 17 Since the discovery of OFETs in the 1980s, they have attracted much attention. Research onOFETs includes the discovery, design, and synthesis of π-conjugated systems for OFETs, device optimization, development of applications in radio frequency identification (RFID) tags, flexible displays, electronic papers, sensors, and so forth. It is beyond the scope of this review to cover all aspects of π-conjugated systems; hence, our focus will be on the performance analysis of π-conjugated systems in OFETs. This should make it possible to extract information regarding the fundamental merit of semiconducting π-conjugated materials and capture what is needed for newmaterials and what is the synthesis orientation of newπ-conjugated systems. In fact, for a new science with many practical applications, the field of organic electronics is progressing extremely rapidly. For example, using “organic field effect transistor” or “organic field effect transistors” as the query keywords to search the Web of Science citation database, it is possible to show the distribution of papers over recent years as shown in Figure 1A. It is very clear

2,942 citations

Journal ArticleDOI
TL;DR: This critical review describes the latest developments in the sensitization of near-infrared luminescence, "soft" luminescent materials (liquid crystals, ionic liquids, ionogels), electroluminescentmaterials for organic light emitting diodes, with emphasis on white light generation, and applications in luminecent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation.
Abstract: Recent startling interest for lanthanide luminescence is stimulated by the continuously expanding need for luminescent materials meeting the stringent requirements of telecommunication, lighting, electroluminescent devices, (bio-)analytical sensors and bio-imaging set-ups. This critical review describes the latest developments in (i) the sensitization of near-infrared luminescence, (ii) “soft” luminescent materials (liquid crystals, ionic liquids, ionogels), (iii) electroluminescent materials for organic light emitting diodes, with emphasis on white light generation, and (iv) applications in luminescent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation (500 references).

2,895 citations

Journal ArticleDOI

2,877 citations