scispace - formally typeset
Search or ask a question
Author

Chin Thing Ong

Other affiliations: Genome Institute of Singapore
Bio: Chin Thing Ong is an academic researcher from Institute of Molecular and Cell Biology. The author has contributed to research in topics: Gene & Promoter. The author has an hindex of 5, co-authored 5 publications receiving 2302 citations. Previous affiliations of Chin Thing Ong include Genome Institute of Singapore.

Papers
More filters
Journal ArticleDOI
TL;DR: A whole-genome comparative view of DNA methylation using bisulfite sequencing of three cultured cell types representing progressive stages of differentiation highlights the value of high-resolution methylation maps, in conjunction with other systems-level analyses, for investigation of previously undetectable developmental regulatory mechanisms.
Abstract: DNA methylation is a critical epigenetic regulator in mammalian development. Here, we present a whole-genome comparative view of DNA methylation using bisulfite sequencing of three cultured cell types representing progressive stages of differentiation: human embryonic stem cells (hESCs), a fibroblastic differentiated derivative of the hESCs, and neonatal fibroblasts. As a reference, we compared our maps with a methylome map of a fully differentiated adult cell type, mature peripheral blood mononuclear cells (monocytes). We observed many notable common and cell-type-specific features among all cell types. Promoter hypomethylation (both CG and CA) and higher levels of gene body methylation were positively correlated with transcription in all cell types. Exons were more highly methylated than introns, and sharp transitions of methylation occurred at exon-intron boundaries, suggesting a role for differential methylation in transcript splicing. Developmental stage was reflected in both the level of global methylation and extent of non-CpG methylation, with hESC highest, fibroblasts intermediate, and monocytes lowest. Differentiation-associated differential methylation profiles were observed for developmentally regulated genes, including the HOX clusters, other homeobox transcription factors, and pluripotence-associated genes such as POU5F1, TCF3, and KLF4. Our results highlight the value of high-resolution methylation maps, in conjunction with other systems-level analyses, for investigation of previously undetectable developmental regulatory mechanisms.

1,017 citations

Journal ArticleDOI
TL;DR: The data suggest that GRIM‐19 is a novel negative regulator of Stat3, which inhibits Stat3 nuclear translocation stimulated by epidermal growth factor (EGF) and suppresses cell growth in Src‐transformed cells and a Stat3‐expressing cell line.
Abstract: Signal transducer and activator of transcription 3 (Stat3) is a latent cytoplasmic transcription factor that can be activated by cytokines and growth factors. Stat3 plays important roles in cell growth, anti-apoptosis and cell transformation, and is constitutively active in various cancers. We examined its potential regulators by yeast two-hybrid screening. GRIM-19, a gene product related to interferon-β- and retinoic acid-induced cancer cell death, was identified and demonstrated to interact with Stat3 in various cell types. The interaction is specific for Stat3, but not for Stat1 and Stat5a. The interaction regions in both proteins were mapped, and the cellular localization of the interaction was examined. GRIM-19 itself co-localizes with mitochondrial markers, and forms aggregates at the perinulear region with co-expressed Stat3, which inhibits Stat3 nuclear translocation stimulated by epidermal growth factor (EGF). GRIM-19 represses Stat3 transcriptional activity and its target gene expression, and also suppresses cell growth in Src-transformed cells and a Stat3-expressing cell line. Our data suggest that GRIM-19 is a novel negative regulator of Stat3.

220 citations

Journal ArticleDOI
TL;DR: This paper reports a method using amplified cDNA derived from five embryos for gene expression profiling of the 18‐somite zebrafish cloche (clo) mutant, in which development of hematopoietic and endothelial lineages is severely impaired.
Abstract: Zebrafish is an excellent model organism for studying vertebrate development and human disease. With the availability of increased numbers of zebrafish mutants and microarray chips, gene expression profiling has become a powerful tool for identification of downstream target genes perturbed by a specific mutation. One of the obstacles often encountered, however, is to isolate large numbers of zebrafish mutant embryos that are indistinguishable in morphology from the wild-type siblings for microarray analysis. Here, we report a method using amplified cDNA derived from five embryos for gene expression profiling of the 18-somite zebrafish cloche (clo) mutant, in which development of hematopoietic and endothelial lineages is severely impaired. In total, 31 differentially expressed target genes are identified, of which 13 have not been reported previously. We further determine that of these 13 new targets, 8 genes, including coproporphyrinogen oxidase (cpo), carbonic anhydrase (cahz), claudin g (cldn g), zinc-finger–like gene 2 (znfl2), neutrophil cytosol factor 1 (ncf1), matrix metalloproteinase 13 (mmp13), dual specificity phosphatase 5 (dusp5), and a novel gene referred as zebrafish vessel-specific gene 1 (zvsg1) are predominantly expressed in hematopoietic and endothelial cells. Comparative analysis demonstrates that this method is comparable and complementary to that of the conventional approach using unamplified sample. Our study provides valuable information for studying hematopoiesis and vessel formation. The method described here offers a powerful tool for gene expression profiling of zebrafish mutants in general. Developmental Dynamics 233:1163–1172, 2005. © 2005 Wiley-Liss, Inc.

62 citations

Journal ArticleDOI
TL;DR: It is found that the C-terminal domain of Stat3 negatively regulates its receptor binding activity only in the absence of the first α-helix of the coiled-coil domain, which leads to a hypothesis of intramolecular interaction.

31 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

13,548 citations

Journal Article
01 Jan 2012-Nature
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

8,106 citations

Journal ArticleDOI
18 Dec 2014-Cell
TL;DR: In situ Hi-C is used to probe the 3D architecture of genomes, constructing haploid and diploid maps of nine cell types, identifying ∼10,000 loops that frequently link promoters and enhancers, correlate with gene activation, and show conservation across cell types and species.

5,945 citations

Journal ArticleDOI
TL;DR: Improved genome-scale mapping of methylation allows us to evaluate DNA methylation in different genomic contexts: transcriptional start sites with or without CpG islands, in gene bodies, at regulatory elements and at repeat sequences.
Abstract: DNA methylation is frequently described as a 'silencing' epigenetic mark, and indeed this function of 5-methylcytosine was originally proposed in the 1970s. Now, thanks to improved genome-scale mapping of methylation, we can evaluate DNA methylation in different genomic contexts: transcriptional start sites with or without CpG islands, in gene bodies, at regulatory elements and at repeat sequences. The emerging picture is that the function of DNA methylation seems to vary with context, and the relationship between DNA methylation and transcription is more nuanced than we realized at first. Improving our understanding of the functions of DNA methylation is necessary for interpreting changes in this mark that are observed in diseases such as cancer.

4,799 citations