scispace - formally typeset
Search or ask a question
Author

Chinchusha Anasooya Shaji

Bio: Chinchusha Anasooya Shaji is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Neural stem cell & Hippocampal formation. The author has an hindex of 1, co-authored 1 publications receiving 1 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used immunohistochemistry (IHC) to assess neural progenitor cell proliferation (BrdU and Ki67), the percentage of increased NPC activation (Sox2+/Ki67+), the number of immature neurons (NeuroD1), and ectopic dentate gyrus granule cells (Prox1).
Abstract: Hippocampal neurodegeneration is a consequence of excessive alcohol drinking in alcohol use disorders (AUDs), however, recent studies suggest that females may be more susceptible to alcohol-induced brain damage. Adult hippocampal neurogenesis is now well accepted to contribute to hippocampal integrity and is known to be affected by alcohol in humans as well as in animal models of AUDs. In male rats, a reactive increase in adult hippocampal neurogenesis has been observed during abstinence from alcohol dependence, a phenomenon that may underlie recovery of hippocampal structure and function. It is unknown whether reactive neurogenesis occurs in females. Therefore, adult female rats were exposed to a 4-day binge model of alcohol dependence followed by 7 or 14 days of abstinence. Immunohistochemistry (IHC) was used to assess neural progenitor cell (NPC) proliferation (BrdU and Ki67), the percentage of increased NPC activation (Sox2+/Ki67+), the number of immature neurons (NeuroD1), and ectopic dentate gyrus granule cells (Prox1). On day seven of abstinence, ethanol-treated females showed a significant increase in BrdU+ and Ki67+ cells in the subgranular zone of the dentate gyrus (SGZ), as well as greater activation of NPCs (Sox2+/Ki67+) into active cycling. At day 14 of abstinence, there was a significant increase in the number of immature neurons (NeuroD1+) though no evidence of ectopic neurogenesis according to either NeuroD1 or Prox1 immunoreactivity. Altogether, these data suggest that alcohol dependence produces similar reactive increases in NPC proliferation and adult neurogenesis. Thus, reactive, adult neurogenesis may be a means of recovery for the hippocampus after alcohol dependence in females.

4 citations


Cited by
More filters
Book ChapterDOI
TL;DR: In this article, a review describes what little is known about adolescent-specific effects of alcohol on adult neurogenesis and its relationship to hippocampal integrity and the role of adolescent-born neurons.
Abstract: Alcohol is the most commonly used drug among adolescents. Their decreased sensitivity to self-regulating cues to stop drinking coincides with an enhanced vulnerability to negative outcomes of excessive drinking. In adolescents, the hippocampus is one brain region that is particularly susceptible to alcohol-induced neurodegeneration. While cell death is causal, alcohol effects on adult neurogenesis also impact hippocampal structure and function. This review describes what little is known about adolescent-specific effects of alcohol on adult neurogenesis and its relationship to hippocampal integrity. For example, alcohol intoxication inhibits neurogenesis persistently in adolescents but produces aberrant neurogenesis after alcohol dependence. Little is known, however, about the role of adolescent-born neurons in hippocampal integrity or the mechanisms of these effects. Understanding the role of neurogenesis in adolescent alcohol use and misuse is critical to our understanding of adolescent susceptibility to alcohol pathology and increased likelihood of developing alcohol problems in adulthood.

4 citations

Journal ArticleDOI
30 May 2023-Heliyon
TL;DR: In this paper , the effect of chronic alcohol consumption on spatial memory impairment in both sexes and changes in BDNF signaling in the hippocampus was investigated using the Morris water maze and the expression of BDNF, TrkB, phosphorylation of PLCγ1 (p-PLCγ 1) and pLCγγ1 was examined using Western blot.
Journal ArticleDOI
TL;DR: In this article , the impact of light alcohol consumption (LAC) on neurogenesis under physiological conditions and following ischemic stroke was investigated, and the locomotor activity was determined by the accelerating rotarod and open field tests.
Abstract: Ischemic stroke is one of the leading causes of death and disability worldwide. Neurogenesis plays a crucial role in postischemic functional recovery. Alcohol dose-dependently affects the prognosis of ischemic stroke. We investigated the impact of light alcohol consumption (LAC) on neurogenesis under physiological conditions and following ischemic stroke. C57BL/6J mice (three months old) were fed with 0.7 g/kg/day ethanol (designed as LAC) or volume-matched water (designed as control) daily for eight weeks. To evaluate neurogenesis, the numbers of 5-bromo-2-deoxyuridine (BrdU)+/doublecortin (DCX)+ and BrdU+/NeuN+ neurons were assessed in the subventricular zone (SVZ), dentate gyrus (DG), ischemic cortex, and ischemic striatum. The locomotor activity was determined by the accelerating rotarod and open field tests. LAC significantly increased BrdU+/DCX+ and BrdU+/NeuN+ cells in the SVZ under physiological conditions. Ischemic stroke dramatically increased BrdU+/DCX+ and BrdU+/NeuN+ cells in the DG, SVZ, ischemic cortex, and ischemic striatum. The increase in BrdU+/DCX+ cells was significantly greater in LAC mice compared to the control mice. In addition, LAC significantly increased BrdU+/NeuN+ cells by about three folds in the DG, SVZ, and ischemic cortex. Furthermore, LAC reduced ischemic brain damage and improved locomotor activity. Therefore, LAC may protect the brain against ischemic stroke by promoting neurogenesis.