scispace - formally typeset
Search or ask a question
Author

Ching Fa Yao

Bio: Ching Fa Yao is an academic researcher from National Taiwan Normal University. The author has contributed to research in topics: Indole test & Michael reaction. The author has an hindex of 33, co-authored 243 publications receiving 4267 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple, inexpensive and efficient one-pot synthesis of 1,4-dihydropyridine derivatives at room temperature using catalytic amount of iodine was reported with excellent product yields.

297 citations

Journal ArticleDOI
TL;DR: 4H-Chromene and N-arylquinoline derivatives are obtained in good to excellent yields by proceeding through a simple, mild, and efficient procedure utilizing tetrabutylammonium fluoride (TBAF) as catalyst.

234 citations

Journal ArticleDOI
TL;DR: In this article, an inexpensive, nontoxic, and readily available catalytic system (5 mol%) in water efficiently catalyzes the condensation reaction of various 1,2-diketones and 1 2-diamines.

216 citations

Journal ArticleDOI
TL;DR: In this article, a facile and efficient one-pot synthesis of polyhydroquinoline derivatives at ambient temperature using Ceric Ammonium Nitrate (CAN) as catalyst via the Hantzsch reaction was reported.

200 citations

Journal ArticleDOI
TL;DR: In this article, various biologically important quinoxaline derivatives were efficiently synthesized in excellent yields using inexpensive, nontoxic, and readily available bench top chemical, iodine in catalytic amount (10 moles).

183 citations


Cited by
More filters
Journal ArticleDOI
Geou Yarh Liou1, Peter Storz1
TL;DR: The generation of ROS within tumour cells, their detoxification, their cellular effects, as well as the major signalling cascades they utilize are discussed, but also an outlook on their modulation in therapeutics is provided.
Abstract: Elevated rates of reactive oxygen species (ROS) have been detected in almost all cancers, where they promote many aspects of tumour development and progression. However, tumour cells also express increased levels of antioxidant proteins to detoxify from ROS, suggesting that a delicate balance of intracellular ROS levels is required for cancer cell function. Further, the radical generated, the location of its generation, as well as the local concentration is important for the cellular functions of ROS in cancer. A challenge for novel therapeutic strategies will be the fine tuning of intracellular ROS signalling to effectively deprive cells from ROS-induced tumour promoting events, towards tipping the balance to ROS-induced apoptotic signalling. Alternatively, therapeutic antioxidants may prevent early events in tumour development, where ROS are important. However, to effectively target cancer cells specific ROS-sensing signalling pathways that mediate the diverse stress-regulated cellular functions need to be identified. This review discusses the generation of ROS within tumour cells, their detoxification, their cellular effects, as well as the major signalling cascades they utilize, but also provides an outlook on their modulation in therapeutics.

2,625 citations

Journal ArticleDOI
TL;DR: One of the goals of this Review is to attract the attention of the scientific community as to the benefits of using hypervalent iodine compounds as an environmentally sustainable alternative to heavy metals.
Abstract: The preparation, structure, and chemistry of hypervalent iodine compounds are reviewed with emphasis on their synthetic application. Compounds of iodine possess reactivity similar to that of transition metals, but have the advantage of environmental sustainability and efficient utilization of natural resources. These compounds are widely used in organic synthesis as selective oxidants and environmentally friendly reagents. Synthetic uses of hypervalent iodine reagents in halogenation reactions, various oxidations, rearrangements, aminations, C–C bond-forming reactions, and transition metal-catalyzed reactions are summarized and discussed. Recent discovery of hypervalent catalytic systems and recyclable reagents, and the development of new enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important achievement in the field of hypervalent iodine chemistry. One of the goals of this Review is to attract the attention of the scientific community as to the benefits of...

1,228 citations

Journal ArticleDOI
TL;DR: This work reviews systematically the progress of porphyrins of varied kinds, and their derivatives, applied in PSSC with a focus on reports during 2007-2012 from the point of view of molecular design correlated with photovoltaic performance.
Abstract: Nature has chosen chlorophylls in plants as antennae to harvest light for the conversion of solar energy in complicated photosynthetic processes. Inspired by natural photosynthesis, scientists utilized artificial chlorophylls – the porphyrins – as efficient centres to harvest light for solar cells sensitized with a porphyrin (PSSC). After the first example appeared in 1993 of a porphyrin of type copper chlorophyll as a photosensitizer for PSSC that achieved a power conversion efficiency of 2.6%, no significant advance of PSSC was reported until 2005; beta-linked zinc porphyrins were then reported to show promising device performances with a benchmark efficiency of 7.1% reported in 2007. Meso-linked zinc porphyrin sensitizers in the first series with a push–pull framework appeared in 2009; the best cell performed comparably to that of a N3-based device, and a benchmark 11% was reported for a porphyrin sensitizer of this type in 2010. With a structural design involving long alkoxyl chains to envelop the porphyrin core to suppress the dye aggregation for a push–pull zinc porphyrin, the PSSC achieved a record 12.3% in 2011 with co-sensitization of an organic dye and a cobalt-based electrolyte. The best PSSC system exhibited a panchromatic feature for light harvesting covering the visible spectral region to 700 nm, giving opportunities to many other porphyrins, such as fused and dimeric porphyrins, with near-infrared absorption spectral features, together with the approach of molecular co-sensitization, to enhance the device performance of PSSC. According to this historical trend for the development of prospective porphyrin sensitizers used in PSSC, we review systematically the progress of porphyrins of varied kinds, and their derivatives, applied in PSSC with a focus on reports during 2007–2012 from the point of view of molecular design correlated with photovoltaic performance.

1,208 citations

Journal ArticleDOI
TL;DR: This Review emphasizes the achievements in the selective catalytic functionalization of indoles (C-C bond-forming processes) over the last four years.
Abstract: 140 years ago Adolf von Baeyer proposed the structure of a heteroaromatic compound which revolutionized organic and medical chemistry: indole. After more than a century, indole itself and the complexity of naturally occurring indole derivatives continue to inspire and influence developments in synthetic chemistry. In particular, the ubiquitous presence of indole rings in pharmaceuticals, agrochemicals, and functional materials are testament to the ever increasing interest in the design of mild and efficient synthetic routes to functionalized indole derivatives. This Review emphasizes the achievements in the selective catalytic functionalization of indoles (C-C bond-forming processes) over the last four years.

1,141 citations