scispace - formally typeset
Search or ask a question
Author

Ching Y. Suen

Bio: Ching Y. Suen is an academic researcher from Concordia University. The author has contributed to research in topics: Handwriting recognition & Feature extraction. The author has an hindex of 65, co-authored 511 publications receiving 23594 citations. Previous affiliations of Ching Y. Suen include École de technologie supérieure & Concordia University Wisconsin.


Papers
More filters
Proceedings ArticleDOI
23 Aug 2010
TL;DR: A novel illumination-normalization method using the combination of the Kernel Principal Component Analysis (KPCA) and Pre-image technology that can restore the frontal-illuminated face image from a single non-frontal-illumiated face image.
Abstract: In this paper, we propose a novel illumination-normalization method. By using the combination of the Kernel Principal Component Analysis (KPCA) and Pre-image technology, this method can restore the frontal-illuminated face image from a single non-frontal-illuminated face image. In this method, a frontal-illumination subspace is first learned by KPCA. For each input face image, we project its large-scale features, which are affected by illumination variations, onto this subspace to normalize the illumination. Then the frontal-illuminated face image is reconstructed by combining the small- and the normalized large- scale features. Unlike most existing techniques, the proposed method does not require any shape modeling or lighting estimation. As a holistic reconstruction, KPCA+Pre-image technology incurs less local distortion. Compared to directly applying KPCA+Pre-image technology on the original image, our proposed method can be better at processing an image of a face that is outside the training set. Experiments on CMU-PIE and Extended Yale B face databases show that the proposed method outperforms state-of-the-art algorithms.

4 citations

Proceedings ArticleDOI
30 Aug 1992
TL;DR: An optimal algorithm for detecting straight lines in chain codes is described that turns the complicated problem of determining the straightness of digital arcs into a simple task by constructing a passing area around the pixels.
Abstract: An optimal algorithm for detecting straight lines in chain codes is described. The algorithm turns the complicated problem of determining the straightness of digital arcs into a simple task by constructing a passing area around the pixels. It is shown that this algorithm is not only simple and intuitive, but also highly efficient. >

4 citations

Journal ArticleDOI
TL;DR: Two examples are presented to illustrate how the proposed MLIS solves a practical engineering problem of pattern recognition and how the ERT is applied to design a pattern recognizer.

4 citations

Proceedings Article
01 Nov 2012
TL;DR: The proposed CSMA method achieves both fastest running time and highest accuracy in the face recognition problem compared to MPCA and some other multifactor based methods on two challenging databases, i.e. CMU-MPIE and Extended YALE-B.
Abstract: This paper proposes a novel approach named Compressed Submanifold Multifactor Analysis (CSMA) to concisely and precisely deal with multifactor analysis. Compared to the state-of-the-art MPCA method that loses the original local geometry structures of input factors due to the averaging process, our proposed approach can preserve their original geometry. In addition, the fast low-rank approximation of a given dataset with multifactors is also provided using Random Projection to reduce space requirements and give more transparent representation. Our proposed method achieves both fastest running time and highest accuracy in the face recognition problem compared to MPCA and some other multifactor based methods on two challenging databases, i.e. CMU-MPIE and Extended YALE-B.

4 citations

Book ChapterDOI
15 May 2013
TL;DR: Experimental results indicate that these combinations improve the rejection performance consistently and MCS built by dataset re-sampling works better than that with structural modification in rejection.
Abstract: Aiming at improving the reliability of a recognition system, this paper presents a novel SVM-based rejection measurement (SVMM) and voting based combination methods of multiple classifier system (MCS) for pattern rejection. Compared with the previous heuristic designed criteria, SVMM is more straight-forward and can make use of much more information from the training data. The voting based combination methods for rejection is a preliminary attempt to adopt MCS for rejection. Comparison of SVMM with other well-known rejection criteria proves that it achieves the highest performance. Two different methods (structural modification and dataset re-sampling) are used to build MCSs. The basic classifier is the convolution neural network (CNN) which has achieved promising performances in numerous applications. Rejection based on MCS is then evaluated on MNIST and CENPARMI digit databases. Specifically, different rejection criteria (FRM, FTRM and SVMM) are individually combined with MCS for pattern rejection. Experimental results indicate that these combinations improve the rejection performance consistently and MCS built by dataset re-sampling works better than that with structural modification in rejection.

4 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.
Abstract: The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.

6,527 citations

Journal ArticleDOI
TL;DR: A common theoretical framework for combining classifiers which use distinct pattern representations is developed and it is shown that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision.
Abstract: We develop a common theoretical framework for combining classifiers which use distinct pattern representations and show that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision. An experimental comparison of various classifier combination schemes demonstrates that the combination rule developed under the most restrictive assumptions-the sum rule-outperforms other classifier combinations schemes. A sensitivity analysis of the various schemes to estimation errors is carried out to show that this finding can be justified theoretically.

5,670 citations

Book
01 Jan 1996
TL;DR: Professor Ripley brings together two crucial ideas in pattern recognition; statistical methods and machine learning via neural networks in this self-contained account.
Abstract: From the Publisher: Pattern recognition has long been studied in relation to many different (and mainly unrelated) applications, such as remote sensing, computer vision, space research, and medical imaging. In this book Professor Ripley brings together two crucial ideas in pattern recognition; statistical methods and machine learning via neural networks. Unifying principles are brought to the fore, and the author gives an overview of the state of the subject. Many examples are included to illustrate real problems in pattern recognition and how to overcome them.This is a self-contained account, ideal both as an introduction for non-specialists readers, and also as a handbook for the more expert reader.

5,632 citations