scispace - formally typeset
Search or ask a question
Author

Chip Stewart

Bio: Chip Stewart is an academic researcher from Broad Institute. The author has contributed to research in topics: Exome & Medicine. The author has an hindex of 58, co-authored 109 publications receiving 43005 citations. Previous affiliations of Chip Stewart include Massachusetts Institute of Technology & University of North Carolina at Chapel Hill.
Topics: Exome, Medicine, Germline mutation, Cancer, Genome


Papers
More filters
Journal ArticleDOI
TL;DR: The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA with a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages.
Abstract: The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile.

5,294 citations

Journal Article
01 Sep 2013-Nature
TL;DR: The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels as mentioned in this paper.
Abstract: The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile.

4,634 citations

Journal ArticleDOI
Michael S. Lawrence1, Petar Stojanov1, Petar Stojanov2, Paz Polak2, Paz Polak1, Paz Polak3, Gregory V. Kryukov1, Gregory V. Kryukov2, Gregory V. Kryukov3, Kristian Cibulskis1, Andrey Sivachenko1, Scott L. Carter1, Chip Stewart1, Craig H. Mermel2, Craig H. Mermel1, Steven A. Roberts4, Adam Kiezun1, Peter S. Hammerman1, Peter S. Hammerman2, Aaron McKenna5, Aaron McKenna1, Yotam Drier, Lihua Zou1, Alex H. Ramos1, Trevor J. Pugh2, Trevor J. Pugh1, Nicolas Stransky1, Elena Helman6, Elena Helman1, Jaegil Kim1, Carrie Sougnez1, Lauren Ambrogio1, Elizabeth Nickerson1, Erica Shefler1, Maria L. Cortes1, Daniel Auclair1, Gordon Saksena1, Douglas Voet1, Michael S. Noble1, Daniel DiCara1, Pei Lin1, Lee Lichtenstein1, David I. Heiman1, Timothy Fennell1, Marcin Imielinski1, Marcin Imielinski2, Bryan Hernandez1, Eran Hodis2, Eran Hodis1, Sylvan C. Baca1, Sylvan C. Baca2, Austin M. Dulak1, Austin M. Dulak2, Jens G. Lohr1, Jens G. Lohr2, Dan A. Landau7, Dan A. Landau2, Dan A. Landau1, Catherine J. Wu2, Jorge Melendez-Zajgla, Alfredo Hidalgo-Miranda, Amnon Koren1, Amnon Koren2, Steven A. McCarroll2, Steven A. McCarroll1, Jaume Mora8, Ryan S. Lee9, Ryan S. Lee2, Brian D. Crompton9, Brian D. Crompton2, Robert C. Onofrio1, Melissa Parkin1, Wendy Winckler1, Kristin G. Ardlie1, Stacey Gabriel1, Charles W. M. Roberts9, Charles W. M. Roberts2, Jaclyn A. Biegel10, Kimberly Stegmaier2, Kimberly Stegmaier1, Kimberly Stegmaier9, Adam J. Bass1, Adam J. Bass2, Levi A. Garraway1, Levi A. Garraway2, Matthew Meyerson1, Matthew Meyerson2, Todd R. Golub, Dmitry A. Gordenin4, Shamil R. Sunyaev3, Shamil R. Sunyaev1, Shamil R. Sunyaev2, Eric S. Lander6, Eric S. Lander1, Eric S. Lander2, Gad Getz1, Gad Getz2 
11 Jul 2013-Nature
TL;DR: A fundamental problem with cancer genome studies is described: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds and the list includes many implausible genes, suggesting extensive false-positive findings that overshadow true driver events.
Abstract: Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour-normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour-normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.

4,411 citations

Journal ArticleDOI
01 Jan 2014-Nature
TL;DR: In this paper, the authors report molecular profiling of 230 resected lung adnocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, methylation and proteomic analyses.
Abstract: Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230 resected lung adenocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, methylation and proteomic analyses. High rates of somatic mutation were seen (mean 8.9 mutations per megabase). Eighteen genes were statistically significantly mutated, including RIT1 activating mutations and newly described loss-of-function MGA mutations which are mutually exclusive with focal MYC amplification. EGFR mutations were more frequent in female patients, whereas mutations in RBM10 were more common in males. Aberrations in NF1, MET, ERBB2 and RIT1 occurred in 13% of cases and were enriched in samples otherwise lacking an activated oncogene, suggesting a driver role for these events in certain tumours. DNA and mRNA sequence from the same tumour highlighted splicing alterations driven by somatic genomic changes, including exon 14 skipping in MET mRNA in 4% of cases. MAPK and PI(3)K pathway activity, when measured at the protein level, was explained by known mutations in only a fraction of cases, suggesting additional, unexplained mechanisms of pathway activation. These data establish a foundation for classification and further investigations of lung adenocarcinoma molecular pathogenesis.

4,104 citations

Journal ArticleDOI
28 Aug 2013-Nature
TL;DR: Remodelling cellular metabolism constitutes a recurrent pattern in ccRCC that correlates with tumour stage and severity and offers new views on the opportunities for disease treatment.
Abstract: Genetic changes underlying clear cell renal cell carcinoma (ccRCC) include alterations in genes controlling cellular oxygen sensing (for example, VHL) and the maintenance of chromatin states (for example, PBRM1). We surveyed more than 400 tumours using different genomic platforms and identified 19 significantly mutated genes. The PI(3)K/AKT pathway was recurrently mutated, suggesting this pathway as a potential therapeutic target. Widespread DNA hypomethylation was associated with mutation of the H3K36 methyltransferase SETD2, and integrative analysis suggested that mutations involving the SWI/SNF chromatin remodelling complex (PBRM1, ARID1A, SMARCA4) could have far-reaching effects on other pathways. Aggressive cancers demonstrated evidence of a metabolic shift, involving downregulation of genes involved in the TCA cycle, decreased AMPK and PTEN protein levels, upregulation of the pentose phosphate pathway and the glutamine transporter genes, increased acetyl-CoA carboxylase protein, and altered promoter methylation of miR-21 (also known as MIR21) and GRB10. Remodelling cellular metabolism thus constitutes a recurrent pattern in ccRCC that correlates with tumour stage and severity and offers new views on the opportunities for disease treatment.

2,548 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
TL;DR: The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor and is hoped that it will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.
Abstract: The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor. For the first time, the WHO classification of CNS tumors uses molecular parameters in addition to histology to define many tumor entities, thus formulating a concept for how CNS tumor diagnoses should be structured in the molecular era. As such, the 2016 CNS WHO presents major restructuring of the diffuse gliomas, medulloblastomas and other embryonal tumors, and incorporates new entities that are defined by both histology and molecular features, including glioblastoma, IDH-wildtype and glioblastoma, IDH-mutant; diffuse midline glioma, H3 K27M-mutant; RELA fusion-positive ependymoma; medulloblastoma, WNT-activated and medulloblastoma, SHH-activated; and embryonal tumour with multilayered rosettes, C19MC-altered. The 2016 edition has added newly recognized neoplasms, and has deleted some entities, variants and patterns that no longer have diagnostic and/or biological relevance. Other notable changes include the addition of brain invasion as a criterion for atypical meningioma and the introduction of a soft tissue-type grading system for the now combined entity of solitary fibrous tumor / hemangiopericytoma-a departure from the manner by which other CNS tumors are graded. Overall, it is hoped that the 2016 CNS WHO will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.

11,197 citations

Journal ArticleDOI
Ludmil B. Alexandrov1, Serena Nik-Zainal2, Serena Nik-Zainal3, David C. Wedge1, Samuel Aparicio4, Sam Behjati5, Sam Behjati1, Andrew V. Biankin, Graham R. Bignell1, Niccolo Bolli5, Niccolo Bolli1, Åke Borg3, Anne Lise Børresen-Dale6, Anne Lise Børresen-Dale7, Sandrine Boyault8, Birgit Burkhardt8, Adam Butler1, Carlos Caldas9, Helen Davies1, Christine Desmedt, Roland Eils5, Jorunn E. Eyfjord10, John A. Foekens11, Mel Greaves12, Fumie Hosoda13, Barbara Hutter5, Tomislav Ilicic1, Sandrine Imbeaud14, Sandrine Imbeaud15, Marcin Imielinsk14, Natalie Jäger5, David T. W. Jones16, David T. Jones1, Stian Knappskog11, Stian Knappskog17, Marcel Kool11, Sunil R. Lakhani18, Carlos López-Otín18, Sancha Martin1, Nikhil C. Munshi19, Nikhil C. Munshi20, Hiromi Nakamura13, Paul A. Northcott16, Marina Pajic21, Elli Papaemmanuil1, Angelo Paradiso22, John V. Pearson23, Xose S. Puente18, Keiran Raine1, Manasa Ramakrishna1, Andrea L. Richardson22, Andrea L. Richardson20, Julia Richter22, Philip Rosenstiel22, Matthias Schlesner5, Ton N. Schumacher24, Paul N. Span25, Jon W. Teague1, Yasushi Totoki13, Andrew Tutt24, Rafael Valdés-Mas18, Marit M. van Buuren25, Laura van ’t Veer26, Anne Vincent-Salomon27, Nicola Waddell23, Lucy R. Yates1, Icgc PedBrain24, Jessica Zucman-Rossi15, Jessica Zucman-Rossi14, P. Andrew Futreal1, Ultan McDermott1, Peter Lichter24, Matthew Meyerson20, Matthew Meyerson14, Sean M. Grimmond23, Reiner Siebert22, Elias Campo28, Tatsuhiro Shibata13, Stefan M. Pfister16, Stefan M. Pfister11, Peter J. Campbell2, Peter J. Campbell29, Peter J. Campbell30, Michael R. Stratton2, Michael R. Stratton31 
22 Aug 2013-Nature
TL;DR: It is shown that hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types, and this results reveal the diversity of mutational processes underlying the development of cancer.
Abstract: All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.

7,904 citations

Journal ArticleDOI
01 Nov 2012-Nature
TL;DR: It is shown that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites.
Abstract: By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertions and deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation, which is further increased by the action of purifying selection. We show that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and low-frequency variants in individuals from diverse, including admixed, populations.

7,710 citations