scispace - formally typeset
Search or ask a question
Author

Chitta Saha

Bio: Chitta Saha is an academic researcher from Coventry University. The author has contributed to research in topics: Electromagnetic coil & Photovoltaic system. The author has an hindex of 14, co-authored 34 publications receiving 2368 citations. Previous affiliations of Chitta Saha include Tyndall National Institute & University College Cork.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors presented a small (component volume 1 cm3, practical volume 1 5 cm3) electromagnetic generator utilizing discrete components and optimized for a low ambient vibration level based upon real application data.
Abstract: Vibration energy harvesting is receiving a considerable amount of interest as a means for powering wireless sensor nodes This paper presents a small (component volume 01 cm3, practical volume 015 cm3) electromagnetic generator utilizing discrete components and optimized for a low ambient vibration level based upon real application data The generator uses four magnets arranged on an etched cantilever with a wound coil located within the moving magnetic field Magnet size and coil properties were optimized, with the final device producing 46 µW in a resistive load of 4 k? from just 059 m s-2 acceleration levels at its resonant frequency of 52 Hz A voltage of 428 mVrms was obtained from the generator with a 2300 turn coil which has proved sufficient for subsequent rectification and voltage step-up circuitry The generator delivers 30% of the power supplied from the environment to useful electrical power in the load This generator compares very favourably with other demonstrated examples in the literature, both in terms of normalized power density and efficiency

1,313 citations

Journal ArticleDOI
TL;DR: In this article, an electromagnetic-based generator is presented for supplying generating power from human body motion and has application in providing energy for body worn sensors or electronics devices, and the experimental results show that the prototype could generate 300μW to 2.5mW power from Human Body Motion during walking and slow running.
Abstract: This paper presents an electromagnetic based generator which is suitable for supplying generating power from human body motion and has application in providing energy for body worn sensors or electronics devices. A prototype generator has been built and tested both by a shaker at resonance condition and also by human body motion during walking and slow running. The experimental results will show that the prototype could generate 300 μW to 2.5 mW power from human body motion. The measured results are analyzed and compared with the theoretical model.

547 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the modeling and optimization of an electromagnetic-based generator for generating power from ambient vibrations, which consists of magnets suspended on a beam vibrating relative to a coil.
Abstract: This paper presents the modeling and optimization of an electromagnetic-based generator for generating power from ambient vibrations. Basic equations describing such generators are presented and the conditions for maximum power generation are described. Two-centimeter scale prototype generators, which consist of magnets suspended on a beam vibrating relative to a coil, have been built and tested. The measured power and modeled results are compared. It is shown that the experimental results confirm the optimization theory

172 citations

Journal ArticleDOI
21 Aug 2006
TL;DR: In this paper, a silicon microgenerator with static magnets positioned on either side of a moving coil, which is located on a silicon structure designed to resonate laterally in the plane of the chip, is presented.
Abstract: This paper presents a silicon microgenerator, fabricated using standard silicon micromachining techniques, which converts external ambient vibrations into electrical energy. Power is generated by an electromagnetic transduction mechanism with static magnets positioned on either side of a moving coil, which is located on a silicon structure designed to resonate laterally in the plane of the chip. The volume of this device is approximately 100 mm3. ANSYS finite element analysis (FEA) has been used to determine the optimum geometry for the microgenerator. Electromagnetic FEA simulations using Ansoft’s Maxwell 3D software have been performed to determine the voltage generated from a single beam generator design. The predicted voltage levels of 0.7–4.15 V can be generated for a two-pole arrangement by tuning the damping factor to achieve maximum displacement for a given input excitation. Experimental results from the microgenerator demonstrate a maximum power output of 104 nW for 0.4g (g=9.81 m s−1) input acceleration at 1.615 kHz. Other frequencies can be achieved by employing different geometries or materials.

96 citations

Journal ArticleDOI
29 May 2007
TL;DR: In this article, the authors investigated how the power generated by electromagnetic based vibrational power generators scales with the dimension of the generator and the effects of scaling on the magnetic fields, the coil parameters and the electromagnetic damping.
Abstract: This paper investigates how the power generated by electromagnetic based vibrational power generators scales with the dimension of the generator. The effects of scaling on the magnetic fields, the coil parameters and the electromagnetic damping are presented. An analysis is presented for both wire-wound coil technology and micro-fabricated coils. The power obtainable from electromagnetic generators in the dimension range of 1–10 mm is calculated. It is shown that the theoretical maximum power scales with the cube of the dimension. It is also shown that the high coil resistance associated with micro-coils severely restricts the power, which can be extracted.

77 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of existing piezoelectric generators is presented in this paper, including impact coupled, resonant and human-based devices, including large scale discrete devices and wafer-scale integrated versions.
Abstract: This paper reviews the state-of-the art in vibration energy harvesting for wireless, self-powered microsystems. Vibration-powered generators are typically, although not exclusively, inertial spring and mass systems. The characteristic equations for inertial-based generators are presented, along with the specific damping equations that relate to the three main transduction mechanisms employed to extract energy from the system. These transduction mechanisms are: piezoelectric, electromagnetic and electrostatic. Piezoelectric generators employ active materials that generate a charge when mechanically stressed. A comprehensive review of existing piezoelectric generators is presented, including impact coupled, resonant and human-based devices. Electromagnetic generators employ electromagnetic induction arising from the relative motion between a magnetic flux gradient and a conductor. Electromagnetic generators presented in the literature are reviewed including large scale discrete devices and wafer-scale integrated versions. Electrostatic generators utilize the relative movement between electrically isolated charged capacitor plates to generate energy. The work done against the electrostatic force between the plates provides the harvested energy. Electrostatic-based generators are reviewed under the classifications of in-plane overlap varying, in-plane gap closing and out-of-plane gap closing; the Coulomb force parametric generator and electret-based generators are also covered. The coupling factor of each transduction mechanism is discussed and all the devices presented in the literature are summarized in tables classified by transduction type; conclusions are drawn as to the suitability of the various techniques.

2,834 citations

Journal ArticleDOI
03 Sep 2008
TL;DR: The principles and state-of-art in motion-driven miniature energy harvesters are reviewed and trends, suitable applications, and possible future developments are discussed.
Abstract: Energy harvesting generators are attractive as inexhaustible replacements for batteries in low-power wireless electronic devices and have received increasing research interest in recent years. Ambient motion is one of the main sources of energy for harvesting, and a wide range of motion-powered energy harvesters have been proposed or demonstrated, particularly at the microscale. This paper reviews the principles and state-of-art in motion-driven miniature energy harvesters and discusses trends, suitable applications, and possible future developments.

1,781 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a small (component volume 1 cm3, practical volume 1 5 cm3) electromagnetic generator utilizing discrete components and optimized for a low ambient vibration level based upon real application data.
Abstract: Vibration energy harvesting is receiving a considerable amount of interest as a means for powering wireless sensor nodes This paper presents a small (component volume 01 cm3, practical volume 015 cm3) electromagnetic generator utilizing discrete components and optimized for a low ambient vibration level based upon real application data The generator uses four magnets arranged on an etched cantilever with a wound coil located within the moving magnetic field Magnet size and coil properties were optimized, with the final device producing 46 µW in a resistive load of 4 k? from just 059 m s-2 acceleration levels at its resonant frequency of 52 Hz A voltage of 428 mVrms was obtained from the generator with a 2300 turn coil which has proved sufficient for subsequent rectification and voltage step-up circuitry The generator delivers 30% of the power supplied from the environment to useful electrical power in the load This generator compares very favourably with other demonstrated examples in the literature, both in terms of normalized power density and efficiency

1,313 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of strategies for powering MEMS via non-regenerative and regenerative power supplies, along with recent advancements, and discuss future trends and applications for piezoelectric energy harvesting technology.
Abstract: Power consumption is forecast by the International Technology Roadmap of Semiconductors (ITRS) to pose long-term technical challenges for the semiconductor industry. The purpose of this paper is threefold: (1) to provide an overview of strategies for powering MEMS via non-regenerative and regenerative power supplies; (2) to review the fundamentals of piezoelectric energy harvesting, along with recent advancements, and (3) to discuss future trends and applications for piezoelectric energy harvesting technology. The paper concludes with a discussion of research needs that are critical for the enhancement of piezoelectric energy harvesting devices.

1,151 citations

Journal ArticleDOI
TL;DR: A new method based on the exploitation of the dynamical features of stochastic nonlinear oscillators is shown to outperform standard linear oscillators and to overcome some of the most severe limitations of present approaches.
Abstract: Ambient energy harvesting has been in recent years the recurring object of a number of research efforts aimed at providing an autonomous solution to the powering of small-scale electronic mobile devices. Among the different solutions, vibration energy harvesting has played a major role due to the almost universal presence of mechanical vibrations. Here we propose a new method based on the exploitation of the dynamical features of stochastic nonlinear oscillators. Such a method is shown to outperform standard linear oscillators and to overcome some of the most severe limitations of present approaches. We demonstrate the superior performances of this method by applying it to piezoelectric energy harvesting from ambient vibration.

1,055 citations