scispace - formally typeset
Search or ask a question
Author

Chiu C. Tang

Bio: Chiu C. Tang is an academic researcher from Diamond Light Source (United Kingdom). The author has contributed to research in topics: Powder diffraction & Catalysis. The author has an hindex of 29, co-authored 110 publications receiving 4024 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This study reveals simultaneous and cooperative hydrogen-bonding, π···π stacking interactions and intermolecular dipole interactions in the binding of acetylene and ethylene to give up to 12 individual weak supramolecular interactions aligned within the host to form an optimal geometry for the selective binding of hydrocarbons.
Abstract: Supramolecular interactions are fundamental to host-guest binding in chemical and biological processes. Direct visualisation of such supramolecular interactions within host-guest systems is extremely challenging but crucial for the understanding of their function. We report a comprehensive study combining neutron scattering with synchrotron X-ray and neutron diffraction, coupled with computational modelling, to define the detailed binding at a molecular level of acetylene, ethylene and ethane within the porous host NOTT-300. This study reveals the simultaneous and cooperative hydrogen-bonding, π···π stacking interactions and inter-molecular dipole interactions in the binding of acetylene and ethylene to give up to twelve individual weak supramolecular interactions aligned within the host to form an optimal geometry for intelligent, selective binding of hydrocarbons. We also report, for the first time, the cooperative binding of a mixture of acetylene and ethylene within the porous host together with the corresponding breakthrough experiment and analysis of mixed gas adsorption isotherms.

468 citations

Journal ArticleDOI
TL;DR: This work reports a non-amine-containing porous solid (NOTT-300) in which hydroxyl groups within pores bind CO(2) and SO( 2) selectively, offering the potential for the application of new 'easy-on/easy-off' captured gases that carry fewer economic and environmental penalties.
Abstract: Understanding the mechanism by which porous solids trap harmful gases such as CO(2) and SO(2) is essential for the design of new materials for their selective removal. Materials functionalized with amine groups dominate this field, largely because of their potential to form carbamates through H(2)N(δ(-))···C(δ(+))O(2) interactions, thereby trapping CO(2) covalently. However, the use of these materials is energy-intensive, with significant environmental impact. Here, we report a non-amine-containing porous solid (NOTT-300) in which hydroxyl groups within pores bind CO(2) and SO(2) selectively. In situ powder X-ray diffraction and inelastic neutron scattering studies, combined with modelling, reveal that hydroxyl groups bind CO(2) and SO(2) through the formation of O=C(S)=O(δ(-))···H(δ(+))-O hydrogen bonds, which are reinforced by weak supramolecular interactions with C-H atoms on the aromatic rings of the framework. This offers the potential for the application of new 'easy-on/easy-off' capture systems for CO(2) and SO(2) that carry fewer economic and environmental penalties.

438 citations

Journal ArticleDOI
TL;DR: Temperature-dependent adsorption/desorption hysteresis in desolvated NOTT-202a that responds selectively to CO(2) is reported, and stepwise filling of pores generated within the observed partially interpenetrated structure has been modelled by grand canonical Monte Carlo simulations.
Abstract: The selective capture of carbon dioxide in porous materials has potential for the storage and purification of fuel and flue gases. However, adsorption capacities under dynamic conditions are often insufficient for practical applications, and strategies to enhance CO2–host selectivity are required. The unique partially interpenetrated metal–organic framework NOTT-202 represents a new class of dynamic material that undergoes pronounced framework phase transition on desolvation. We report temperature-dependent adsorption/desorption hysteresis in desolvated NOTT-202a that responds selectively to CO2. The CO2 isotherm shows three steps in the adsorption profile at 195 K, and stepwise filling of pores generated within the observed partially interpenetrated structure has been modelled by grand canonical Monte Carlo simulations. Adsorption of N2, CH4, O2, Ar and H2 exhibits reversible isotherms without hysteresis under the same conditions, and this allows capture of gases at high pressure, but selectively leaves CO2 trapped in the nanopores at low pressure.

410 citations

Journal ArticleDOI
TL;DR: The Powder Calibration and Processing packages implemented in DAWN 2 provide an automated diffraction-geometry calibration and data processing environment for two-dimensional diffraction experiments that guarantees reproducibility and transparency of the data treatment.
Abstract: A software package for the calibration and processing of powder X-ray diffraction and small-angle X-ray scattering data is presented. It provides a multitude of data processing and visualization tools as well as a command-line scripting interface for on-the-fly processing and the incorporation of complex data treatment tasks. Customizable processing chains permit the execution of many data processing steps to convert a single image or a batch of raw two-dimensional data into meaningful data and one-dimensional diffractograms. The processed data files contain the full data provenance of each process applied to the data. The calibration routines can run automatically even for high energies and also for large detector tilt angles. Some of the functionalities are highlighted by specific use cases.

335 citations

Journal ArticleDOI
TL;DR: A structure-driven degradation mechanism for NMC811, in which a proportion of the material exhibits a lowered accessible state of charge at the end of charging after repetitive cycling and becomes fatigued, is reported and provides fundamental insights into strategies to help mitigate this degradation process.
Abstract: Ni-rich layered cathode materials are among the most promising candidates for high-energy-density Li-ion batteries, yet their degradation mechanisms are still poorly understood. We report a structure-driven degradation mechanism for NMC811 (LiNi0.8Mn0.1Co0.1O2), in which a proportion of the material exhibits a lowered accessible state of charge at the end of charging after repetitive cycling and becomes fatigued. Operando synchrotron long-duration X-ray diffraction enabled by a laser-thinned coin cell shows the emergence and growth in the concentration of this fatigued phase with cycle number. This degradation is structure driven and is not solely due to kinetic limitations or intergranular cracking: no bulk phase transformations, no increase in Li/Ni antisite mixing and no notable changes in the local structure or Li-ion mobility of the bulk are seen in aged NMCs. Instead, we propose that this degradation stems from the high interfacial lattice strain between the reconstructed surface and the bulk layered structure that develops when the latter is at states of charge above a distinct threshold of approximately 75%. This mechanism is expected to be universal in Ni-rich layered cathodes. Our findings provide fundamental insights into strategies to help mitigate this degradation process. Ni-rich layered cathode materials are promising for high-energy-density Li-ion batteries, but their degradation mechanisms are still poorly understood. A structure-driven mechanism with a lowered accessible state of charge after repetitive cycling is proposed for a typical NMC811 cathode.

275 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
01 Oct 1971-Nature
TL;DR: Lipson and Steeple as mentioned in this paper interpreted X-ray powder diffraction patterns and found that powder-diffraction patterns can be represented by a set of 3-dimensional planes.
Abstract: Interpretation of X-ray Powder Diffraction Patterns . By H. Lipson and H. Steeple. Pp. viii + 335 + 3 plates. (Mac-millan: London; St Martins Press: New York, May 1970.) £4.

1,867 citations

Journal ArticleDOI
TL;DR: This review is expected to guide the design of stable MOFs by providing insights into existing structures, which could lead to the discovery and development of more advanced functional materials.
Abstract: Metal-organic frameworks (MOFs) are an emerging class of porous materials with potential applications in gas storage, separations, catalysis, and chemical sensing. Despite numerous advantages, applications of many MOFs are ultimately limited by their stability under harsh conditions. Herein, the recent advances in the field of stable MOFs, covering the fundamental mechanisms of MOF stability, design, and synthesis of stable MOF architectures, and their latest applications are reviewed. First, key factors that affect MOF stability under certain chemical environments are introduced to guide the design of robust structures. This is followed by a short review of synthetic strategies of stable MOFs including modulated synthesis and postsynthetic modifications. Based on the fundamentals of MOF stability, stable MOFs are classified into two categories: high-valency metal-carboxylate frameworks and low-valency metal-azolate frameworks. Along this line, some representative stable MOFs are introduced, their structures are described, and their properties are briefly discussed. The expanded applications of stable MOFs in Lewis/Bronsted acid catalysis, redox catalysis, photocatalysis, electrocatalysis, gas storage, and sensing are highlighted. Overall, this review is expected to guide the design of stable MOFs by providing insights into existing structures, which could lead to the discovery and development of more advanced functional materials.

1,721 citations