scispace - formally typeset
Search or ask a question
Author

Chloé B. Steen

Bio: Chloé B. Steen is an academic researcher from Stanford University. The author has contributed to research in topics: Medicine & Breast cancer. The author has an hindex of 10, co-authored 20 publications receiving 1017 citations. Previous affiliations of Chloé B. Steen include University of Oslo & Oslo University Hospital.

Papers
More filters
Journal ArticleDOI
TL;DR: The utility of CIBERSORTx is evaluated in multiple tumor types, including melanoma, where single-cell reference profiles were used to dissect bulk clinical specimens, revealing cell-type-specific phenotypic states linked to distinct driver mutations and response to immune checkpoint blockade.
Abstract: Single-cell RNA-sequencing has emerged as a powerful technique for characterizing cellular heterogeneity, but it is currently impractical on large sample cohorts and cannot be applied to fixed specimens collected as part of routine clinical care. We previously developed an approach for digital cytometry, called CIBERSORT, that enables estimation of cell type abundances from bulk tissue transcriptomes. We now introduce CIBERSORTx, a machine learning method that extends this framework to infer cell-type-specific gene expression profiles without physical cell isolation. By minimizing platform-specific variation, CIBERSORTx also allows the use of single-cell RNA-sequencing data for large-scale tissue dissection. We evaluated the utility of CIBERSORTx in multiple tumor types, including melanoma, where single-cell reference profiles were used to dissect bulk clinical specimens, revealing cell-type-specific phenotypic states linked to distinct driver mutations and response to immune checkpoint blockade. We anticipate that digital cytometry will augment single-cell profiling efforts, enabling cost-effective, high-throughput tissue characterization without the need for antibodies, disaggregation or viable cells. CIBERSORTx, a suite of computational tools, enables inference of cell type abundance and cell-type-specific gene expression profiles from bulk RNA profiles.

1,812 citations

Book ChapterDOI
TL;DR: This chapter provides a detailed primer on CIBERSORTx and demonstrates its capabilities for high-throughput profiling of cell types and cellular states in normal and neoplastic tissues.
Abstract: CIBERSORTx is a suite of machine learning tools for the assessment of cellular abundance and cell type-specific gene expression patterns from bulk tissue transcriptome profiles. With this framework, single-cell or bulk-sorted RNA sequencing data can be used to learn molecular signatures of distinct cell types from a small collection of biospecimens. These signatures can then be repeatedly applied to characterize cellular heterogeneity from bulk tissue transcriptomes without physical cell isolation. In this chapter, we provide a detailed primer on CIBERSORTx and demonstrate its capabilities for high-throughput profiling of cell types and cellular states in normal and neoplastic tissues.

180 citations

Journal ArticleDOI
15 Oct 2020-Cell
TL;DR: It is demonstrated that pre-treatment circulating tumor DNA (ctDNA) and peripheral CD8 T cell levels are independently associated with DCB and that ctDNA dynamics after a single infusion can aid in identification of patients who will achieve durable clinical benefit (DCB).

177 citations

Journal ArticleDOI
TL;DR: The absence of plasmacytoid cells, the presence of plasma cells predominantly outside the nodular lymphoid infiltrates, IGHV4-34 restriction and absence of MYD88 L265P mutation strongly suggest that cold agglutinin-associated lymphoproliferative disease is a distinct entity that is different from lymphoplasmacytic lymphoma.
Abstract: Primary chronic cold agglutinin disease is a rare hemolytic disease mediated by monoclonal IGHV4-34-encoded cold agglutinins with a predominant specificity for the blood group antigen I. Bone marrow from 54 patients was studied to type the underlying lymphoproliferative disorder better. Bone marrow biopsies showed circumscribed intra-parenchymatous nodules with small monotonous monoclonal B cells in 40/54 patients (median infiltration: 10% of marrow cells) with a CD20+, IgMs+, IgDs+, CD27+, CD5−/+, CD11c−, CD23−, CD38− immunophenotype. Neither plasmacytoid cytological features nor expression of plasma cell differentiation-associated transcription factors MUM1, XBP1 and BLIMP1 were noted in these B cells. However, a limited number of mature monoclonal IgM+, IgD− plasma cells were present outside the lymphoid nodules and were diffusely scattered throughout the marrow. Of interest, the MYD88 L265P mutation, typical of lymphoplasmacytic lymphoma, was not detected (17/17 cases). Somatically mutated monoclonal IGHV4-34 gene rearrangement was demonstrated in eight patients with frozen samples (mean sequence homology 95.4%). However, mutations of BCL6 intron 1 were not demonstrated, except in one patient, suggesting that the lymphoma cells had not matured in the germinal center. In conclusion, cold agglutinin-associated lymphoproliferative disease displays homogeneous histological and immunophenotypic features. The absence of plasmacytoid cells, the presence of plasma cells predominantly outside the nodular lymphoid infiltrates, IGHV4-34 restriction and absence of MYD88 L265P mutation strongly suggest that cold agglutinin-associated lymphoproliferative disease is a distinct entity that is different from lymphoplasmacytic lymphoma.

124 citations

Journal ArticleDOI
TL;DR: In this paper , the authors applied mass cytometry by time of flight, single-cell RNA sequencing, singlecell V(D)J sequencing, bulk RNA sequencing and bulk T cell receptor (TCR) sequencing to study peripheral blood samples from patients with melanoma treated with anti-PD-1 monotherapy or anti-CD-1 and anti-CTLA-4 combination ICIs.
Abstract: Severe immune-related adverse events (irAEs) occur in up to 60% of patients with melanoma treated with immune checkpoint inhibitors (ICIs). However, it is unknown whether a common baseline immunological state precedes irAE development. Here we applied mass cytometry by time of flight, single-cell RNA sequencing, single-cell V(D)J sequencing, bulk RNA sequencing and bulk T cell receptor (TCR) sequencing to study peripheral blood samples from patients with melanoma treated with anti-PD-1 monotherapy or anti-PD-1 and anti-CTLA-4 combination ICIs. By analyzing 93 pre- and early on-ICI blood samples and 3 patient cohorts (n = 27, 26 and 18), we found that 2 pretreatment factors in circulation-activated CD4 memory T cell abundance and TCR diversity-are associated with severe irAE development regardless of organ system involvement. We also explored on-treatment changes in TCR clonality among patients receiving combination therapy and linked our findings to the severity and timing of irAE onset. These results demonstrate circulating T cell characteristics associated with ICI-induced toxicity, with implications for improved diagnostics and clinical management.

94 citations


Cited by
More filters
01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

01 Apr 2016
TL;DR: Tirosh et al. as discussed by the authors applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells.
Abstract: Single-cell expression profiles of melanoma Tumors harbor multiple cell types that are thought to play a role in the development of resistance to drug treatments. Tirosh et al. used single-cell sequencing to investigate the distribution of these differing genetic profiles within melanomas. Many cells harbored heterogeneous genetic programs that reflected two different states of genetic expression, one of which was linked to resistance development. Following drug treatment, the resistance-linked expression state was found at a much higher level. Furthermore, the environment of the melanoma cells affected their gene expression programs. Science, this issue p. 189 Melanoma cells show transcriptional heterogeneity. To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.

823 citations

Journal ArticleDOI
TL;DR: Results indicate that exosome secretion maintains cellular homeostasis by removing harmful cytoplasmic DNA from cells, and provide valuable new insights into the control of cellularHomeostasis.
Abstract: Emerging evidence is revealing that exosomes contribute to many aspects of physiology and disease through intercellular communication However, the biological roles of exosome secretion in exosome-secreting cells have remained largely unexplored Here we show that exosome secretion plays a crucial role in maintaining cellular homeostasis in exosome-secreting cells The inhibition of exosome secretion results in the accumulation of nuclear DNA in the cytoplasm, thereby causing the activation of cytoplasmic DNA sensing machinery This event provokes the innate immune response, leading to reactive oxygen species (ROS)-dependent DNA damage response and thus induce senescence-like cell-cycle arrest or apoptosis in normal human cells These results, in conjunction with observations that exosomes contain various lengths of chromosomal DNA fragments, indicate that exosome secretion maintains cellular homeostasis by removing harmful cytoplasmic DNA from cells Together, these findings enhance our understanding of exosome biology, and provide valuable new insights into the control of cellular homeostasis

527 citations

Journal ArticleDOI
TL;DR: The similarities and differences of various ESCRT-dependent processes are reviewed, with special emphasis on mechanisms of ESCRT recruitment.
Abstract: Cellular membranes can form two principally different involutions, which either exclude or contain cytosol. The 'classical' budding reactions, such as those occurring during endocytosis or formation of exocytic vesicles, involve proteins that assemble on the cytosol-excluding face of the bud neck. Inverse membrane involution occurs in a wide range of cellular processes, supporting cytokinesis, endosome maturation, autophagy, membrane repair and many other processes. Such inverse membrane remodelling is mediated by a heteromultimeric protein machinery known as endosomal sorting complex required for transport (ESCRT). ESCRT proteins assemble on the cytosolic (or nucleoplasmic) face of the neck of the forming involution and cooperate with the ATPase VPS4 to drive membrane scission or sealing. Here, we review similarities and differences of various ESCRT-dependent processes, with special emphasis on mechanisms of ESCRT recruitment.

472 citations

Journal ArticleDOI
TL;DR: A comprehensive analysis of the current therapies targeting the tumor microenvironment (TME) is provided in this paper, combining a discussion of the underlying basic biology with clinical evaluation of different therapeutic approaches, and highlighting the challenges and future perspectives.
Abstract: Strategies to therapeutically target the tumor microenvironment (TME) have emerged as a promising approach for cancer treatment in recent years due to the critical roles of the TME in regulating tumor progression and modulating response to standard-of-care therapies Here, we summarize the current knowledge regarding the most advanced TME-directed therapies, which have either been clinically approved or are currently being evaluated in trials, including immunotherapies, antiangiogenic drugs, and treatments directed against cancer-associated fibroblasts and the extracellular matrix We also discuss some of the challenges associated with TME therapies, and future perspectives in this evolving field SIGNIFICANCE: This review provides a comprehensive analysis of the current therapies targeting the TME, combining a discussion of the underlying basic biology with clinical evaluation of different therapeutic approaches, and highlighting the challenges and future perspectives

418 citations