scispace - formally typeset
Search or ask a question
Author

Chong Han

Bio: Chong Han is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Computer science & Bandwidth (signal processing). The author has an hindex of 19, co-authored 98 publications receiving 2642 citations. Previous affiliations of Chong Han include University of Electronic Science and Technology of China & Georgia Institute of Technology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: An in-depth view of Terahertz Band (0.1-10 THz) communication, which is envisioned as a key technology to satisfy the increasing demand for higher speed wireless communication, is provided.

1,206 citations

Journal ArticleDOI
TL;DR: A unified multi-ray channel model in the Terahertz Band is developed based on ray tracing techniques, which incorporates the propagation models for the line-of-sight, reflected, scattered, and diffracted paths to lay out the foundation for reliable and efficient ultra-high-speed wireless communications in the (0.06-10) THz Band.
Abstract: Terahertz (0.06–10 THz) Band communication is envisioned as a key technology for satisfying the increasing demand for ultra-high-speed wireless links. In this paper, first, a unified multi-ray channel model in the THz Band is developed based on ray tracing techniques, which incorporates the propagation models for the line-of-sight, reflected, scattered, and diffracted paths. The developed theoretical model is validated with the experimental measurements (0.06–1 THz) from the literature. Then, using the developed propagation models, an in-depth analysis on the THz channel characteristics is carried out. In particular, the distance-varying and frequency-selective nature of the Terahertz channel is analyzed. Moreover, the coherence bandwidth and the significance of the delay spread are studied. Furthermore, the wideband channel capacity using flat and water-filling power allocation strategies is characterized. Additionally, the temporal broadening effects of the Terahertz channel are studied. Finally, distance-adaptive and multi-carrier transmissions are suggested to best benefit from the unique relationship between distance and bandwidth. The provided analysis lays out the foundation for reliable and efficient ultra-high-speed wireless communications in the (0.06–10) THz Band.

376 citations

Journal ArticleDOI
TL;DR: In this article, four directions to tackle the crucial problem of distance limitation are investigated, namely, a distance-aware physical layer design, ultra-massive MIMO communication, reflectarrays, and intelligent surfaces.
Abstract: In the millimeter-wave (30-300 GHz) and terahertz (0.1-10 THz) frequency bands, the high spreading loss and molecular absorption often limit the signal transmission distance and coverage range. In this article, four directions to tackle the crucial problem of distance limitation are investigated, namely, a distance-aware physical layer design, ultra-massive MIMO communication, reflectarrays, and intelligent surfaces. Additionally, the potential joint design of these solutions is proposed to combine the benefits and further extend the communication distance. Qualitative and quantitative evaluations are provided to illustrate the benefits of the proposed solutions. The feasibility of mmWave and THz band communications up to 100 m in both line-of-sight and nonline- of-sight areas are demonstrated.

320 citations

Journal ArticleDOI
TL;DR: The state of the art in THz Band device technologies is surveyed, and a roadmap is defined for the development of THZ Band systems as the new frontier in wireless communications.
Abstract: Terahertz Band communication is envisioned as a key technology to satisfy the data rate requirements of future wireless communication networks, and enable new applications both in classical networking domains as well as in novel nanoscale communication paradigms. Major recent advancements in THz Band technologies are helping to finally close the so called THz Gap and bring practical THz Band communication networks one step closer. This paper surveys the state of the art in THz Band device technologies, and highlights the challenges and potential solutions from the communication and networking perspective as well as in terms of experimental testbeds. Ultimately, a roadmap is defined for the development of THz Band systems as the new frontier in wireless communications.

251 citations

Journal ArticleDOI
TL;DR: An in-depth view of channel modeling in the THz band, based on the deterministic, statistical, and hybrid methods is provided, which lays the foundation for reliable and efficient ultra-broadband wireless communications in theTHz band.
Abstract: Terahertz band (0.1-10 THz) communication is envisioned as a key technology to support ultra-broadband wireless systems for beyond 5G. For realization of efficient wireless communication networks in the THz band, it is imperative to develop channel models that can accurately and efficiently characterize the THz spectrum peculiarities. This article provides an in-depth view of channel modeling in the THz band, based on the deterministic, statistical, and hybrid methods. The state-of-the-art THz channel models in single-antenna and ultra-massive MIMO systems are extensively reviewed, respectively. Furthermore, the open challenges and potential research directions are highlighted regarding THz propagation modeling. Associated with the channel models, key physical parameters of the THz channel and their implications for wireless communication design are analyzed. The provided analysis lays the foundation for reliable and efficient ultra-broadband wireless communications in the THz band.

200 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review paper summarizes the current state-of-the-art IoT in industries systematically and identifies research trends and challenges.
Abstract: Internet of Things (IoT) has provided a promising opportunity to build powerful industrial systems and applications by leveraging the growing ubiquity of radio-frequency identification (RFID), and wireless, mobile, and sensor devices. A wide range of industrial IoT applications have been developed and deployed in recent years. In an effort to understand the development of IoT in industries, this paper reviews the current research of IoT, key enabling technologies, major IoT applications in industries, and identifies research trends and challenges. A main contribution of this review paper is that it summarizes the current state-of-the-art IoT in industries systematically.

4,145 citations

Journal ArticleDOI
TL;DR: The relationship between cyber-physical systems and IoT, both of which play important roles in realizing an intelligent cyber- physical world, are explored and existing architectures, enabling technologies, and security and privacy issues in IoT are presented to enhance the understanding of the state of the art IoT development.
Abstract: Fog/edge computing has been proposed to be integrated with Internet of Things (IoT) to enable computing services devices deployed at network edge, aiming to improve the user’s experience and resilience of the services in case of failures. With the advantage of distributed architecture and close to end-users, fog/edge computing can provide faster response and greater quality of service for IoT applications. Thus, fog/edge computing-based IoT becomes future infrastructure on IoT development. To develop fog/edge computing-based IoT infrastructure, the architecture, enabling techniques, and issues related to IoT should be investigated first, and then the integration of fog/edge computing and IoT should be explored. To this end, this paper conducts a comprehensive overview of IoT with respect to system architecture, enabling technologies, security and privacy issues, and present the integration of fog/edge computing and IoT, and applications. Particularly, this paper first explores the relationship between cyber-physical systems and IoT, both of which play important roles in realizing an intelligent cyber-physical world. Then, existing architectures, enabling technologies, and security and privacy issues in IoT are presented to enhance the understanding of the state of the art IoT development. To investigate the fog/edge computing-based IoT, this paper also investigate the relationship between IoT and fog/edge computing, and discuss issues in fog/edge computing-based IoT. Finally, several applications, including the smart grid, smart transportation, and smart cities, are presented to demonstrate how fog/edge computing-based IoT to be implemented in real-world applications.

2,057 citations

Journal ArticleDOI
TL;DR: This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.
Abstract: Frequencies from 100 GHz to 3 THz are promising bands for the next generation of wireless communication systems because of the wide swaths of unused and unexplored spectrum. These frequencies also offer the potential for revolutionary applications that will be made possible by new thinking, and advances in devices, circuits, software, signal processing, and systems. This paper describes many of the technical challenges and opportunities for wireless communication and sensing applications above 100 GHz, and presents a number of promising discoveries, novel approaches, and recent results that will aid in the development and implementation of the sixth generation (6G) of wireless networks, and beyond. This paper shows recent regulatory and standard body rulings that are anticipating wireless products and services above 100 GHz and illustrates the viability of wireless cognition, hyper-accurate position location, sensing, and imaging. This paper also presents approaches and results that show how long distance mobile communications will be supported to above 800 GHz since the antenna gains are able to overcome air-induced attenuation, and present methods that reduce the computational complexity and simplify the signal processing used in adaptive antenna arrays, by exploiting the Special Theory of Relativity to create a cone of silence in over-sampled antenna arrays that improve performance for digital phased array antennas. Also, new results that give insights into power efficient beam steering algorithms, and new propagation and partition loss models above 100 GHz are given, and promising imaging, array processing, and position location results are presented. The implementation of spatial consistency at THz frequencies, an important component of channel modeling that considers minute changes and correlations over space, is also discussed. This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.

1,352 citations

Journal ArticleDOI
TL;DR: This paper provides a tutorial overview of IRS-aided wireless communications, and elaborate its reflection and channel models, hardware architecture and practical constraints, as well as various appealing applications in wireless networks.
Abstract: Intelligent reflecting surface (IRS) is an enabling technology to engineer the radio signal propagation in wireless networks. By smartly tuning the signal reflection via a large number of low-cost passive reflecting elements, IRS is capable of dynamically altering wireless channels to enhance the communication performance. It is thus expected that the new IRS-aided hybrid wireless network comprising both active and passive components will be highly promising to achieve a sustainable capacity growth cost-effectively in the future. Despite its great potential, IRS faces new challenges to be efficiently integrated into wireless networks, such as reflection optimization, channel estimation, and deployment from communication design perspectives. In this paper, we provide a tutorial overview of IRS-aided wireless communications to address the above issues, and elaborate its reflection and channel models, hardware architecture and practical constraints, as well as various appealing applications in wireless networks. Moreover, we highlight important directions worthy of further investigation in future work.

1,325 citations

Journal ArticleDOI
TL;DR: An in-depth view of Terahertz Band (0.1-10 THz) communication, which is envisioned as a key technology to satisfy the increasing demand for higher speed wireless communication, is provided.

1,206 citations