scispace - formally typeset
Search or ask a question
Author

Chong Hu

Bio: Chong Hu is an academic researcher from Hong Kong Baptist University. The author has contributed to research in topics: Detection limit & Microfluidics. The author has an hindex of 9, co-authored 10 publications receiving 280 citations. Previous affiliations of Chong Hu include Hunan University & Jiangxi Science and Technology Normal University.

Papers
More filters
Journal ArticleDOI
TL;DR: This work suggests that while microfluidic flow synthesis is currently underexplored, it is a promising strategy in producing highly active enzyme-MOF composites.
Abstract: Mimicking the cellular environment, metal-organic frameworks (MOFs) are promising for encapsulating enzymes for general applications in environments often unfavorable for native enzymes. Markedly different from previous researches based on bulk solution synthesis, here, we report the synthesis of enzyme-embedded MOFs in a microfluidic laminar flow. The continuously changed concentrations of MOF precursors in the gradient mixing on-chip resulted in structural defects in products. This defect-generating phenomenon enables multimodal pore size distribution in MOFs and therefore allows improved access of substrates to encapsulated enzymes while maintaining the protection to the enzymes. Thus, the as-produced enzyme-MOF composites showed much higher (~one order of magnitude) biological activity than those from conventional bulk solution synthesis. This work suggests that while microfluidic flow synthesis is currently underexplored, it is a promising strategy in producing highly active enzyme-MOF composites.

159 citations

Journal ArticleDOI
TL;DR: The iridium(iii) complex 1 was synthesized and employed in constructing an assay which is based on a G-quadruplex for detecting arsenic ions in aqueous solution and showed high selectivity towards arsenic ions over other metal ions.
Abstract: In this work, the iridium(iii) complex 1 was synthesized and employed in constructing an assay which is based on a G-quadruplex for detecting arsenic ions in aqueous solution. The assay achieved a detection limit of 7.6 nM (ca. 0.57 μg L-1) and showed high selectivity towards arsenic ions over other metal ions. Additionally, the assay could function in natural water and a simple microfluidic chip was used to investigate the potential of this platform for real-time detection.

49 citations

Journal ArticleDOI
TL;DR: A paper-based microfluidic device based on unconventional principle was developed and used to detect lead ions through a two-step process including heated incubation and subsequent mixing to demonstrate rapid, convenient, highly sensitive, and low cost detection of lead(II) ions in water samples.

49 citations

Journal ArticleDOI
Xiaoxiao He1, Chong Hu1, Guo Qian1, Kemin Wang1, Yuhong Li1, Jingfang Shangguan1 
TL;DR: This new method constructed a simultaneous on-line enrichment and detection platform, eliminated the separation and washing-out steps usually required for FNPs label involved bioassay, and the detection limit for S. Typhimurium in deionized water is 56 colony forming units per milliliter (cfu/mL).

39 citations

Journal ArticleDOI
22 Jul 2019-Analyst
TL;DR: The utilization of microfluidic technology will facilitate the construction of progressively biomimetic in vitro models that have great potential in complementing existing animal models, and it is envisioned that such platforms to be utilized in a wide range of applications involving vascular systems, including microphysiological studies, drug screening, and disease modeling.
Abstract: Microfluidic technology has been extensively employed in biology and medicine since the field emerged in the 1990s. By utilizing microfluidic approaches, a variety of vascular system-related structures and functions have been mimicked on in vitro platforms. Herein, we begin by introducing microfluidic circulatory devices for the study of two-dimensional (2D) endothelial cells culture. Next, we focus on recent progress on on-chip mimicry of native vasculature, specifically generation of complex three-dimensional (3D) structures within cell-laden hydrogels using microfluidics and self-assembly-based methods. The utilization of microfluidic technology will facilitate the construction of progressively biomimetic in vitro models that have great potential in complementing existing animal models. We envision such platforms to be utilized in a wide range of applications involving vascular systems, including microphysiological studies, drug screening, and disease modeling.

36 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the characterization methodologies used for enzyme/MOF-immobilized enzymes can be found in this article, where the authors discuss enzyme protection via encapsulation, pore infiltration and surface adsorption and summarizes strategies to form multicomponent composites.
Abstract: Because of their efficiency, selectivity, and environmental sustainability, there are significant opportunities for enzymes in chemical synthesis and biotechnology. However, as the three-dimensional active structure of enzymes is predominantly maintained by weaker noncovalent interactions, thermal, pH, and chemical stressors can modify or eliminate activity. Metal-organic frameworks (MOFs), which are extended porous network materials assembled by a bottom-up building block approach from metal-based nodes and organic linkers, can be used to afford protection to enzymes. The self-assembled structures of MOFs can be used to encase an enzyme in a process called encapsulation when the MOF is synthesized in the presence of the biomolecule. Alternatively, enzymes can be infiltrated into mesoporous MOF structures or surface bound via covalent or noncovalent processes. Integration of MOF materials and enzymes in this way affords protection and allows the enzyme to maintain activity in challenge conditions (e.g., denaturing agents, elevated temperature, non-native pH, and organic solvents). In addition to forming simple enzyme/MOF biocomposites, other materials can be introduced to the composites to improve recovery or facilitate advanced applications in sensing and fuel cell technology. This review canvasses enzyme protection via encapsulation, pore infiltration, and surface adsorption and summarizes strategies to form multicomponent composites. Also, given that enzyme/MOF biocomposites straddle materials chemistry and enzymology, this review provides an assessment of the characterization methodologies used for MOF-immobilized enzymes and identifies some key parameters to facilitate development of the field.

252 citations

Journal ArticleDOI
Yu Chen1, Ruilin Guan1, Chen Zhang1, Juanjuan Huang1, Liang-Nian Ji1, Hui Chao1 
TL;DR: In this article, the authors summarized the recent developments regarding metal complexes as two-photon dyes for cell organelles, cations, anions, gas molecules and biomolecules.

204 citations

Journal ArticleDOI
TL;DR: The efforts to develop functionalized dye-doped SiNPs for fluorescence imaging at the cell and small animal levels are summarized and their properties and imaging applications in cell surface receptor recognition, intracellular labeling, tracking, sensing, and controlled release are described.
Abstract: Going in vivo, including living cells and the whole body, is very important for gaining a better understanding of the mystery of life and requires specialized imaging techniques. The diversity, composition, and temporal-spatial variation of life activities from cells to the whole body require the analysis techniques to be fast-response, noninvasive, highly sensitive, and stable, in situ and in real-time. Functionalized nanoparticle-based fluorescence imaging techniques have the potential to meet such needs through real-time and noninvasive visualization of biological events in vivo. Functionalized silica nanoparticles (SiNPs) doped with fluorescent dyes appear to be an ideal and flexible platform for developing fluorescence imaging techniques used in living cells and the whole body. We can select and incorporate different dyes inside the silica matrix either noncovalently or covalently. These form the functionalized hybrid SiNPs, which support multiplex labeling and ratiometric sensing in living systems. Since the silica matrix protects dyes from outside quenching and degrading factors, this enhances the photostability and biocompatibility of the SiNP-based probes. This makes them ideal for real-time and long-time tracking. One nanoparticle can encapsulate large numbers of dye molecules, which amplifies their optical signal and temporal-spatial resolution response. Integrating fluorescent dye-doped SiNPs with targeting ligands using various surface modification techniques can greatly improve selective recognition. Along with the endocytosis, functionalized SiNPs can be efficiently internalized into cells for noninvasive localization, assessment, and monitoring. These unique characteristics of functionalized SiNPs substantially support their applications in fluorescence imaging in vivo. In this Account, we summarize our efforts to develop functionalized dye-doped SiNPs for fluorescence imaging at the cell and small animal levels. We first discuss how to design and construct various functionalized dye-doped SiNPs. Then we describe their properties and imaging applications in cell surface receptor recognition, intracellular labeling, tracking, sensing, and controlled release. Additionally, we have demonstrated the promising application of dye-doped SiNPs as contrast imaging agents for in vivo fluorescence imaging in small animals. We expect these functionalized dye-doped SiNPs to open new opportunities for biological and medical research and applications.

160 citations

Journal ArticleDOI
TL;DR: The developed nanoprobes were improved in terms of detection range and/or sensitivity when compared with two commercial enzyme-labeled antibody signal reporters, and the nano-ELAAS method was demonstrated to work well in milk samples, a common source of STM contamination.
Abstract: Enzyme-linked immunosorbent assay (ELISA) provides a convenient means for the detection of Salmonella enterica serovar Typhimurium (STM), which is important for rapid diagnosis of foodborne pathogens. However, conventional ELISA is limited by antibody–antigen immunoreactions and suffers from poor sensitivity and tedious sample pretreatment. Therefore, development of novel ELISA remains challenging. Herein, we designed a comprehensive strategy for rapid, sensitive, and quantitative detection of STM with high specificity by gold nanoparticle-based enzyme-linked antibody-aptamer sandwich (nano-ELAAS) method. STM was captured and preconcentrated from samples with aptamer-modified magnetic particles, followed by binding with detector antibodies. Then nanoprobes carrying a large amount of reporter antibodies and horseradish peroxidase molecules were used for colorimetric signal amplification. Under the optimized reaction conditions, the nano-ELAAS assay had a quantitative detection range from 1 × 103 to 1 × 108...

148 citations

Journal ArticleDOI
TL;DR: The rotational paper-based microfluidic chips (RPADs) combined with a molecular-imprinting (MIP) technique to detect phenolic pollutants were presented in this article.
Abstract: In this study, we first present rotational paper-based microfluidic chips (RPADs) combined with a molecular-imprinting (MIP) technique to detect phenolic pollutants. The proposed rotational paper-based microfluidic chips could implement qualitative and quantitative analysis of two different phenolic contaminants, 4-nitrophenol (4-NP) and 2,4,6-trinitrophenol (TNP), simultaneously. Qualitative and quantitative analysis could be implemented simultaneously through fluorescence-intensity changes depending on the structures of quantum dots combined with a molecular-imprinting technique. Moreover, the rotational paper-based microfluidic chips provide a low cost, flexible, and easy way to operate the entire process conveniently. Under the optimal conditions, the proposed sensors showed high sensitivity and selectivity. Our final experimental results illustrated that the detection limits of 4-NP and TNP in the paper-based quantum-dot MIP (PQ-MIP) RPADs ranged from 0.5 to 20.0 mg/L, with detection limits of 0.097 ...

127 citations