scispace - formally typeset
Search or ask a question
Author

Chong Luo

Bio: Chong Luo is an academic researcher from Microsoft. The author has contributed to research in topics: Decoding methods & Communication channel. The author has an hindex of 29, co-authored 106 publications receiving 3990 citations. Previous affiliations of Chong Luo include Shanghai Jiao Tong University & University of Science and Technology of China.


Papers
More filters
Book ChapterDOI
Matej Kristan1, Ales Leonardis2, Jiří Matas3, Michael Felsberg4  +155 moreInstitutions (47)
23 Jan 2019
TL;DR: The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative; results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years.
Abstract: The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a “real-time” experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new long-term tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).

639 citations

Proceedings ArticleDOI
20 Sep 2009
TL;DR: This paper presents the first complete design to apply compressive sampling theory to sensor data gathering for large-scale wireless sensor networks and shows the efficiency and robustness of the proposed scheme.
Abstract: This paper presents the first complete design to apply compressive sampling theory to sensor data gathering for large-scale wireless sensor networks. The successful scheme developed in this research is expected to offer fresh frame of mind for research in both compressive sampling applications and large-scale wireless sensor networks. We consider the scenario in which a large number of sensor nodes are densely deployed and sensor readings are spatially correlated. The proposed compressive data gathering is able to reduce global scale communication cost without introducing intensive computation or complicated transmission control. The load balancing characteristic is capable of extending the lifetime of the entire sensor network as well as individual sensors. Furthermore, the proposed scheme can cope with abnormal sensor readings gracefully. We also carry out the analysis of the network capacity of the proposed compressive data gathering and validate the analysis through ns-2 simulations. More importantly, this novel compressive data gathering has been tested on real sensor data and the results show the efficiency and robustness of the proposed scheme.

631 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: The proposed SA-Siam outperforms all other real-time trackers by a large margin on OTB-2013/50/100 benchmarks and proposes a channel attention mechanism for the semantic branch.
Abstract: Observing that Semantic features learned in an image classification task and Appearance features learned in a similarity matching task complement each other, we build a twofold Siamese network, named SA-Siam, for real-time object tracking. SA-Siam is composed of a semantic branch and an appearance branch. Each branch is a similaritylearning Siamese network. An important design choice in SA-Siam is to separately train the two branches to keep the heterogeneity of the two types of features. In addition, we propose a channel attention mechanism for the semantic branch. Channel-wise weights are computed according to the channel activations around the target position. While the inherited architecture from SiamFC [3] allows our tracker to operate beyond real-time, the twofold design and the attention mechanism significantly improve the tracking performance. The proposed SA-Siam outperforms all other real-time trackers by a large margin on OTB-2013/50/100 benchmarks.

470 citations

Journal ArticleDOI
TL;DR: A multimedia-aware cloud is presented, which addresses how a cloud can perform distributed multimedia processing and storage and provide quality of service (QoS) provisioning for multimedia services, and a media-edge cloud (MEC) architecture is proposed, in which storage, central processing unit (CPU), and graphics processing units (GPU) clusters are presented at the edge.
Abstract: This article introduces the principal concepts of multimedia cloud computing and presents a novel framework. We address multimedia cloud computing from multimedia-aware cloud (media cloud) and cloud-aware multimedia (cloud media) perspectives. First, we present a multimedia-aware cloud, which addresses how a cloud can perform distributed multimedia processing and storage and provide quality of service (QoS) provisioning for multimedia services. To achieve a high QoS for multimedia services, we propose a media-edge cloud (MEC) architecture, in which storage, central processing unit (CPU), and graphics processing unit (GPU) clusters are presented at the edge to provide distributed parallel processing and QoS adaptation for various types of devices.

439 citations

Proceedings ArticleDOI
Matej Kristan1, Amanda Berg2, Linyu Zheng3, Litu Rout4  +176 moreInstitutions (43)
01 Oct 2019
TL;DR: The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative; results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years.
Abstract: The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOTST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" shortterm tracking in RGB, (iii) VOT-LT2019 focused on longterm tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard shortterm, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website.

393 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper analyzes the MEC reference architecture and main deployment scenarios, which offer multi-tenancy support for application developers, content providers, and third parties, and elaborates further on open research challenges.
Abstract: Multi-access edge computing (MEC) is an emerging ecosystem, which aims at converging telecommunication and IT services, providing a cloud computing platform at the edge of the radio access network MEC offers storage and computational resources at the edge, reducing latency for mobile end users and utilizing more efficiently the mobile backhaul and core networks This paper introduces a survey on MEC and focuses on the fundamental key enabling technologies It elaborates MEC orchestration considering both individual services and a network of MEC platforms supporting mobility, bringing light into the different orchestration deployment options In addition, this paper analyzes the MEC reference architecture and main deployment scenarios, which offer multi-tenancy support for application developers, content providers, and third parties Finally, this paper overviews the current standardization activities and elaborates further on open research challenges

1,351 citations

Proceedings ArticleDOI
01 Jun 2019
TL;DR: This method improves the offline training procedure of popular fully-convolutional Siamese approaches for object tracking by augmenting their loss with a binary segmentation task, and operates online, producing class-agnostic object segmentation masks and rotated bounding boxes at 55 frames per second.
Abstract: In this paper we illustrate how to perform both visual object tracking and semi-supervised video object segmentation, in real-time, with a single simple approach. Our method, dubbed SiamMask, improves the offline training procedure of popular fully-convolutional Siamese approaches for object tracking by augmenting their loss with a binary segmentation task. Once trained, SiamMask solely relies on a single bounding box initialisation and operates online, producing class-agnostic object segmentation masks and rotated bounding boxes at 55 frames per second. Despite its simplicity, versatility and fast speed, our strategy allows us to establish a new state-of-the-art among real-time trackers on VOT-2018, while at the same time demonstrating competitive performance and the best speed for the semi-supervised video object segmentation task on DAVIS-2016 and DAVIS-2017.

1,162 citations

Journal ArticleDOI
TL;DR: A large tracking database that offers an unprecedentedly wide coverage of common moving objects in the wild, called GOT-10k, and the first video trajectory dataset that uses the semantic hierarchy of WordNet to guide class population, which ensures a comprehensive and relatively unbiased coverage of diverse moving objects.
Abstract: We introduce here a large tracking database that offers an unprecedentedly wide coverage of common moving objects in the wild, called GOT-10k. Specifically, GOT-10k is built upon the backbone of WordNet structure [1] and it populates the majority of over 560 classes of moving objects and 87 motion patterns, magnitudes wider than the most recent similar-scale counterparts [19] , [20] , [23] , [26] . By releasing the large high-diversity database, we aim to provide a unified training and evaluation platform for the development of class-agnostic, generic purposed short-term trackers. The features of GOT-10k and the contributions of this article are summarized in the following. (1) GOT-10k offers over 10,000 video segments with more than 1.5 million manually labeled bounding boxes, enabling unified training and stable evaluation of deep trackers. (2) GOT-10k is by far the first video trajectory dataset that uses the semantic hierarchy of WordNet to guide class population, which ensures a comprehensive and relatively unbiased coverage of diverse moving objects. (3) For the first time, GOT-10k introduces the one-shot protocol for tracker evaluation, where the training and test classes are zero-overlapped . The protocol avoids biased evaluation results towards familiar objects and it promotes generalization in tracker development. (4) GOT-10k offers additional labels such as motion classes and object visible ratios, facilitating the development of motion-aware and occlusion-aware trackers. (5) We conduct extensive tracking experiments with 39 typical tracking algorithms and their variants on GOT-10k and analyze their results in this paper. (6) Finally, we develop a comprehensive platform for the tracking community that offers full-featured evaluation toolkits, an online evaluation server, and a responsive leaderboard. The annotations of GOT-10k’s test data are kept private to avoid tuning parameters on it.

852 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: An end-to-end tracking architecture, capable of fully exploiting both target and background appearance information for target model prediction, derived from a discriminative learning loss by designing a dedicated optimization process that is capable of predicting a powerful model in only a few iterations.
Abstract: The current strive towards end-to-end trainable computer vision systems imposes major challenges for the task of visual tracking. In contrast to most other vision problems, tracking requires the learning of a robust target-specific appearance model online, during the inference stage. To be end-to-end trainable, the online learning of the target model thus needs to be embedded in the tracking architecture itself. Due to the imposed challenges, the popular Siamese paradigm simply predicts a target feature template, while ignoring the background appearance information during inference. Consequently, the predicted model possesses limited target-background discriminability. We develop an end-to-end tracking architecture, capable of fully exploiting both target and background appearance information for target model prediction. Our architecture is derived from a discriminative learning loss by designing a dedicated optimization process that is capable of predicting a powerful model in only a few iterations. Furthermore, our approach is able to learn key aspects of the discriminative loss itself. The proposed tracker sets a new state-of-the-art on 6 tracking benchmarks, achieving an EAO score of 0.440 on VOT2018, while running at over 40 FPS. The code and models are available at https://github.com/visionml/pytracking.

761 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: ATOM as discussed by the authors proposes a novel tracking architecture consisting of dedicated target estimation and classification components, which is trained to predict the overlap between the target object and an estimated bounding box.
Abstract: While recent years have witnessed astonishing improvements in visual tracking robustness, the advancements in tracking accuracy have been limited. As the focus has been directed towards the development of powerful classifiers, the problem of accurate target state estimation has been largely overlooked. In fact, most trackers resort to a simple multi-scale search in order to estimate the target bounding box. We argue that this approach is fundamentally limited since target estimation is a complex task, requiring high-level knowledge about the object. We address this problem by proposing a novel tracking architecture, consisting of dedicated target estimation and classification components. High level knowledge is incorporated into the target estimation through extensive offline learning. Our target estimation component is trained to predict the overlap between the target object and an estimated bounding box. By carefully integrating target-specific information, our approach achieves previously unseen bounding box accuracy. We further introduce a classification component that is trained online to guarantee high discriminative power in the presence of distractors. Our final tracking framework sets a new state-of-the-art on five challenging benchmarks. On the new large-scale TrackingNet dataset, our tracker ATOM achieves a relative gain of 15% over the previous best approach, while running at over 30 FPS. Code and models are available at https://github.com/visionml/pytracking.

710 citations