scispace - formally typeset
Search or ask a question
Author

Chong Tow Chong

Bio: Chong Tow Chong is an academic researcher from Agency for Science, Technology and Research. The author has contributed to research in topics: Polarization (waves) & Resonance. The author has an hindex of 3, co-authored 3 publications receiving 3975 citations. Previous affiliations of Chong Tow Chong include National University of Singapore.

Papers
More filters
Journal ArticleDOI
TL;DR: The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.
Abstract: Since its discovery, the asymmetric Fano resonance has been a characteristic feature of interacting quantum systems. The shape of this resonance is distinctively different from that of conventional symmetric resonance curves. Recently, the Fano resonance has been found in plasmonic nanoparticles, photonic crystals, and electromagnetic metamaterials. The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.

3,536 citations

Journal ArticleDOI
TL;DR: In this article, a high-numerical-aperture lens is used to achieve light with longitudinal polarization, which has some intriguing possibilities for particle acceleration. But it is difficult to obtain longitudinal polarization.
Abstract: Light is often thought of in terms of radial polarization, but longitudinal polarization is also possible, and it has some intriguing possibilities for particle acceleration. Binary optics, combined with a high-numerical-aperture lens, is a potential route to achieving light with this unusual property.

799 citations

Journal ArticleDOI
TL;DR: In this article, a series of superlatticelike (SLL) structure incorporated with two phase-change materials GeTe and Sb7Te3 was applied in lateral phase change memory.
Abstract: A series of superlatticelike (SLL) structure incorporated with two phase-change materials GeTe and Sb7Te3 was applied in lateral phase change memory. Power consumption and lifetime were used as two criteria to optimize the SLL structure. It was found that with the thickness ratio of GeTe to Sb7Te3 at 1.6, the RESET current could be as low as 1.5 mA and the endurance could reach as high as 5.3×106 cycles. By varying the thickness ratio of GeTe to Sb7Te3, the crystallization temperature of SLL structures and the performance of lateral phase change memory with these SLL structures can be controlled.

46 citations


Cited by
More filters
Journal ArticleDOI
21 Oct 2011-Science
TL;DR: In this article, a two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint phase discontinuities on propagating light as it traverses the interface between two media.
Abstract: Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat’s principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.

6,763 citations

Journal ArticleDOI
TL;DR: It is argued that gold nanotechnology-enabled biomedicine is not simply an act of 'gilding the (nanomedicinal) lily', but that a new 'Golden Age' of biomedical nanotechnology is truly upon us.
Abstract: Gold nanoparticles have been used in biomedical applications since their first colloidal syntheses more than three centuries ago. However, over the past two decades, their beautiful colors and unique electronic properties have also attracted tremendous attention due to their historical applications in art and ancient medicine and current applications in enhanced optoelectronics and photovoltaics. In spite of their modest alchemical beginnings, gold nanoparticles exhibit physical properties that are truly different from both small molecules and bulk materials, as well as from other nanoscale particles. Their unique combination of properties is just beginning to be fully realized in range of medical diagnostic and therapeutic applications. This critical review will provide insights into the design, synthesis, functionalization, and applications of these artificial molecules in biomedicine and discuss their tailored interactions with biological systems to achieve improved patient health. Further, we provide a survey of the rapidly expanding body of literature on this topic and argue that gold nanotechnology-enabled biomedicine is not simply an act of ‘gilding the (nanomedicinal) lily’, but that a new ‘Golden Age’ of biomedical nanotechnology is truly upon us. Moving forward, the most challenging nanoscience ahead of us will be to find new chemical and physical methods of functionalizing gold nanoparticles with compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term term effects on human health and reproduction (472 references).

2,712 citations

Journal ArticleDOI
Naomi J. Halas1, Surbhi Lal1, Wei-Shun Chang1, Stephan Link1, Peter Nordlander1 

2,702 citations

Journal ArticleDOI
Qiwen Zhan1
TL;DR: An overview of the recent developments in the field of cylindrical vector beams is provided in this paper, where the authors also discuss the potential of using these beams in other fields.
Abstract: An overview of the recent developments in the field of cylindrical vector beams is provided. As one class of spatially variant polarization, cylindrical vector beams are the axially symmetric beam solution to the full vector electromagnetic wave equation. These beams can be generated via different active and passive methods. Techniques for manipulating these beams while maintaining the polarization symmetry have also been developed. Their special polarization symmetry gives rise to unique high-numerical-aperture focusing properties that find important applications in nanoscale optical imaging and manipulation. The prospects for cylindrical vector beams and their applications in other fields are also briefly discussed.

2,361 citations

Journal ArticleDOI
18 Nov 2016-Science
TL;DR: How high-index dielectric nanoparticles can offer a substitute for plasmonic nanoparticle structures, providing a highly flexible and low-loss route to the manipulation of light at the nanoscale is reviewed.
Abstract: The resonant modes of plasmonic nanoparticle structures made of gold or silver endow them with an ability to manipulate light at the nanoscale. However, owing to the high light losses caused by metals at optical wavelengths, only a small fraction of plasmonics applications have been realized. Kuznetsov et al. review how high-index dielectric nanoparticles can offer a substitute for these metals, providing a highly flexible and low-loss route to the manipulation of light at the nanoscale. Science , this issue p. [10.1126/science.aag2472][1] [1]: /lookup/doi/10.1126/science.aag2472

2,161 citations