scispace - formally typeset
Search or ask a question
Author

Choong Seon Hong

Bio: Choong Seon Hong is an academic researcher from Kyung Hee University. The author has contributed to research in topics: Wireless sensor network & Wireless network. The author has an hindex of 47, co-authored 1015 publications receiving 12065 citations. Previous affiliations of Choong Seon Hong include University of Maryland University College & National Computerization Agency.


Papers
More filters
Proceedings ArticleDOI
01 Apr 2019
TL;DR: This work formulates a Federated Learning over wireless network as an optimization problem FEDL that captures both trade-offs and obtains the globally optimal solution by charactering the closed-form solutions to all sub-problems, which give qualitative insights to problem design via the obtained optimal FEDl learning time, accuracy level, and UE energy cost.
Abstract: There is an increasing interest in a new machine learning technique called Federated Learning, in which the model training is distributed over mobile user equipments (UEs), and each UE contributes to the learning model by independently computing the gradient based on its local training data. Federated Learning has several benefits of data privacy and potentially a large amount of UE participants with modern powerful processors and low-delay mobile-edge networks. While most of the existing work focused on designing learning algorithms with provable convergence time, other issues such as uncertainty of wireless channels and UEs with heterogeneous power constraints and local data size, are under-explored. These issues especially affect to various trade-offs: (i) between computation and communication latencies determined by learning accuracy level, and thus (ii) between the Federated Learning time and UE energy consumption. We fill this gap by formulating a Federated Learning over wireless network as an optimization problem FEDL that captures both trade-offs. Even though FEDL is non-convex, we exploit the problem structure to decompose and transform it to three convex sub-problems. We also obtain the globally optimal solution by charactering the closed-form solutions to all sub-problems, which give qualitative insights to problem design via the obtained optimal FEDL learning time, accuracy level, and UE energy cost. Our theoretical analysis is also illustrated by extensive numerical results.

743 citations

Journal ArticleDOI
TL;DR: In this article, the problem of proactive deployment of cache-enabled unmanned aerial vehicles (UAVs) for optimizing the quality of experience (QoE) of wireless devices in a cloud radio access network is studied.
Abstract: In this paper, the problem of proactive deployment of cache-enabled unmanned aerial vehicles (UAVs) for optimizing the quality-of-experience (QoE) of wireless devices in a cloud radio access network is studied. In the considered model, the network can leverage human-centric information, such as users’ visited locations, requested contents, gender, job, and device type to predict the content request distribution, and mobility pattern of each user. Then, given these behavior predictions, the proposed approach seeks to find the user-UAV associations, the optimal UAVs’ locations, and the contents to cache at UAVs. This problem is formulated as an optimization problem whose goal is to maximize the users’ QoE while minimizing the transmit power used by the UAVs. To solve this problem, a novel algorithm based on the machine learning framework of conceptor-based echo state networks (ESNs) is proposed. Using ESNs, the network can effectively predict each user’s content request distribution and its mobility pattern when limited information on the states of users and the network is available. Based on the predictions of the users’ content request distribution and their mobility patterns, we derive the optimal locations of UAVs as well as the content to cache at UAVs. Simulation results using real pedestrian mobility patterns from BUPT and actual content transmission data from Youku show that the proposed algorithm can yield 33.3% and 59.6% gains, respectively, in terms of the average transmit power and the percentage of the users with satisfied QoE compared with a benchmark algorithm without caching and a benchmark solution without UAVs.

732 citations

Proceedings ArticleDOI
08 May 2006
TL;DR: The security threats are identified, proposed security mechanisms are reviewed and the holistic view of security for ensuring layered and robust security in wireless sensor networks is discussed.
Abstract: Wireless sensor network (WSN) is an emerging technology that shows great promise for various futuristic applications both for mass public and military The sensing technology combined with processing power and wireless communication makes it lucrative for being exploited in abundance in future The inclusion of wireless communication technology also incurs various types of security threats The intent of this paper is to investigate the security related issues and challenges in wireless sensor networks We identify the security threats, review proposed security mechanisms for wireless sensor networks We also discuss the holistic view of security for ensuring layered and robust security in wireless sensor networks

467 citations

Journal ArticleDOI
10 Aug 2016-Sensors
TL;DR: This work presents an innovative multimodal context mining framework to inspect and infer human behaviour in a more holistic fashion and extends beyond the state-of-the-art, since it not only explores a sole type of context, but also combines diverse levels of context in an integral manner.
Abstract: There is sufficient evidence proving the impact that negative lifestyle choices have on people’s health and wellness. Changing unhealthy behaviours requires raising people’s self-awareness and also providing healthcare experts with a thorough and continuous description of the user’s conduct. Several monitoring techniques have been proposed in the past to track users’ behaviour; however, these approaches are either subjective and prone to misreporting, such as questionnaires, or only focus on a specific component of context, such as activity counters. This work presents an innovative multimodal context mining framework to inspect and infer human behaviour in a more holistic fashion. The proposed approach extends beyond the state-of-the-art, since it not only explores a sole type of context, but also combines diverse levels of context in an integral manner. Namely, low-level contexts, including activities, emotions and locations, are identified from heterogeneous sensory data through machine learning techniques. Low-level contexts are combined using ontological mechanisms to derive a more abstract representation of the user’s context, here referred to as high-level context. An initial implementation of the proposed framework supporting real-time context identification is also presented. The developed system is evaluated for various realistic scenarios making use of a novel multimodal context open dataset and data on-the-go, demonstrating prominent context-aware capabilities at both low and high levels.

447 citations

Journal ArticleDOI
TL;DR: An iterative algorithm is proposed where, at every step, closed-form solutions for time allocation, bandwidth allocation, power control, computation frequency, and learning accuracy are derived and can reduce up to 59.5% energy consumption compared to the conventional FL method.
Abstract: In this paper, the problem of energy efficient transmission and computation resource allocation for federated learning (FL) over wireless communication networks is investigated. In the considered model, each user exploits limited local computational resources to train a local FL model with its collected data and, then, sends the trained FL model to a base station (BS) which aggregates the local FL model and broadcasts it back to all of the users. Since FL involves an exchange of a learning model between users and the BS, both computation and communication latencies are determined by the learning accuracy level. Meanwhile, due to the limited energy budget of the wireless users, both local computation energy and transmission energy must be considered during the FL process. This joint learning and communication problem is formulated as an optimization problem whose goal is to minimize the total energy consumption of the system under a latency constraint. To solve this problem, an iterative algorithm is proposed where, at every step, closed-form solutions for time allocation, bandwidth allocation, power control, computation frequency, and learning accuracy are derived. Since the iterative algorithm requires an initial feasible solution, we construct the completion time minimization problem and a bisection-based algorithm is proposed to obtain the optimal solution, which is a feasible solution to the original energy minimization problem. Numerical results show that the proposed algorithms can reduce up to 59.5% energy consumption compared to the conventional FL method.

365 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
01 May 1975
TL;DR: The Fundamentals of Queueing Theory, Fourth Edition as discussed by the authors provides a comprehensive overview of simple and more advanced queuing models, with a self-contained presentation of key concepts and formulae.
Abstract: Praise for the Third Edition: "This is one of the best books available. Its excellent organizational structure allows quick reference to specific models and its clear presentation . . . solidifies the understanding of the concepts being presented."IIE Transactions on Operations EngineeringThoroughly revised and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fourth Edition continues to present the basic statistical principles that are necessary to analyze the probabilistic nature of queues. Rather than presenting a narrow focus on the subject, this update illustrates the wide-reaching, fundamental concepts in queueing theory and its applications to diverse areas such as computer science, engineering, business, and operations research.This update takes a numerical approach to understanding and making probable estimations relating to queues, with a comprehensive outline of simple and more advanced queueing models. Newly featured topics of the Fourth Edition include:Retrial queuesApproximations for queueing networksNumerical inversion of transformsDetermining the appropriate number of servers to balance quality and cost of serviceEach chapter provides a self-contained presentation of key concepts and formulae, allowing readers to work with each section independently, while a summary table at the end of the book outlines the types of queues that have been discussed and their results. In addition, two new appendices have been added, discussing transforms and generating functions as well as the fundamentals of differential and difference equations. New examples are now included along with problems that incorporate QtsPlus software, which is freely available via the book's related Web site.With its accessible style and wealth of real-world examples, Fundamentals of Queueing Theory, Fourth Edition is an ideal book for courses on queueing theory at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners who analyze congestion in the fields of telecommunications, transportation, aviation, and management science.

2,562 citations