scispace - formally typeset
Search or ask a question
Author

Choy Heng Lai

Other affiliations: Yale-NUS College
Bio: Choy Heng Lai is an academic researcher from National University of Singapore. The author has contributed to research in topics: Complex network & Synchronization (computer science). The author has an hindex of 30, co-authored 157 publications receiving 3278 citations. Previous affiliations of Choy Heng Lai include Yale-NUS College.


Papers
More filters
Journal ArticleDOI
TL;DR: This work addresses the physically important issue of the energy required for achieving control by deriving and validating scaling laws for the lower and upper energy bounds.
Abstract: The outstanding problem of controlling complex networks is relevant to many areas of science and engineering, and has the potential to generate technological breakthroughs as well. We address the physically important issue of the energy required for achieving control by deriving and validating scaling laws for the lower and upper energy bounds. These bounds represent a reasonable estimate of the energy cost associated with control, and provide a step forward from the current research on controllability toward ultimate control of complex networked dynamical systems.

392 citations

Journal ArticleDOI
TL;DR: In this article, a different way to realize nonadiabatic geometric quantum computation is proposed by varying parameters in the Hamiltonian for nuclear-magnetic resonance, where the dynamical and geometric phases are implemented separately without the usual operational process.
Abstract: A different way to realize nonadiabatic geometric quantum computation is proposed by varying parameters in the Hamiltonian for nuclear-magnetic resonance, where the dynamical and geometric phases are implemented separately without the usual operational process. Therefore the phase accumulated in the geometric gate is a pure geometric phase for any input state. In comparison with the conventional geometric gates by rotating operations, our approach simplifies experimental implementations making them robust to certain experimental errors. In contrast to the unconventional geometric gates, our approach distinguishes the total and geometric phases and offers a wide choice of the relations between the dynamical and geometric phases.

123 citations

Journal ArticleDOI
TL;DR: Based on the stability analysis of impulsive system, several network synchronization criteria for local and global adaptive-impulsive synchronization are established in this paper, and a numerical example is also given to illustrate the results.

121 citations

Posted Content
TL;DR: In this paper, the authors proposed a method to extract messages masked by a chaotic signal of a time-delay system with very high dimension and many positive Lyapunov exponents using a special embedding coordinate.
Abstract: We show how to extract messages masked by a chaotic signal of a time-delay system with very high dimension and many positive Lyapunov exponents. Using a special embedding coordinate, the infinite dimensional phase space of the time-delay system is projected to a special three-dimensional space, which enables us to identify the time-delay of the system from the transmitted signal, and reconstruct the chaotic dynamics to unmask the hidden message successfully. The message extraction procedure is illustrated by simulations with Mackey-Glass time-delay system for two type of masking schemes and different kinds of messages.

116 citations

Journal ArticleDOI
TL;DR: This work shows how to extract messages masked by a chaotic signal of a time-delay system with very high dimensions and many positive Lyapunov exponents from the transmitted signal and reconstruct the chaotic dynamics to unmask the hidden message successfully.
Abstract: We show how to extract messages masked by a chaotic signal of a time-delay system with very high dimensions and many positive Lyapunov exponents. Using a special embedding coordinate, the infinite-dimensional phase space of the time-delay system is projected onto a special three-dimensional space, which enables us to identify the time delay of the system from the transmitted signal and reconstruct the chaotic dynamics to unmask the hidden message successfully. The message extraction procedure is illustrated by simulations with the Mackey-Glass time-delay system for two types of masking schemes and different kinds of messages.

111 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations

Journal ArticleDOI
TL;DR: A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear.
Abstract: Complex networks arise in a wide range of biological and sociotechnical systems. Epidemic spreading is central to our understanding of dynamical processes in complex networks, and is of interest to physicists, mathematicians, epidemiologists, and computer and social scientists. This review presents the main results and paradigmatic models in infectious disease modeling and generalized social contagion processes.

3,173 citations

Journal ArticleDOI
TL;DR: The advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology are reported and the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections are overviewed.

2,953 citations