scispace - formally typeset
Search or ask a question
Author

Chr. Tamm

Bio: Chr. Tamm is an academic researcher from German National Metrology Institute. The author has contributed to research in topics: Laser & Atomic clock. The author has an hindex of 25, co-authored 55 publications receiving 3034 citations.
Topics: Laser, Atomic clock, Ion, Spectroscopy, Ion trap


Papers
More filters
Journal ArticleDOI
TL;DR: An optical frequency standard based on the E3 transition of a single trapped (171)Yb+ ion is experimentally investigated and a Ramsey-type excitation scheme that provides immunity to probe-induced frequency shifts is utilized.
Abstract: A twentyfold improvement in the accuracy of a single ytterbium ion atomic clock is achieved using the ion's electric octupole transition.

545 citations

Journal ArticleDOI
TL;DR: The frequency of the (2)S1/2→(2)F7/2 electric octupole (E3) transition in (171)Yb(+) is measured against two caesium fountain clocks as f(E3)=642,121,496,772,645.36 Hz with an improved fractional uncertainty of 3.9×10(-16).
Abstract: Single-ion clocks yield new limits on how much the proton-to-electron mass ratio and the fine structure constant change over time.

329 citations

Journal ArticleDOI
01 Jan 2003-EPL
TL;DR: In this paper, the 3.5 eV nuclear transition in isolated atoms was detected using a double-resonance method by probing the hyperfine structure of a transition in the electron shell, and it was shown that the frequency of the nuclear transition is independent of external magnetic fields to first order and of electric fields to second order.
Abstract: We propose high-resolution laser spectroscopy of the 3.5 eV nuclear transition in Th-229 in isolated atoms. Laser excitation of the nucleus can be detected efficiently in a double-resonance method by probing the hyperfine structure of a transition in the electron shell. It is shown that for a suitably chosen electronic level, the frequency of the nuclear transition is independent of external magnetic fields to first order and of electric fields to second order. This makes Th-229 a possible reference for an optical clock of very high accuracy. The nuclear-electronic double-resonance method can be conveniently applied to a laser-cooled ion of 229Th3+ in a radiofrequency trap. Further applications of nuclear laser spectroscopy are discussed.

291 citations

Journal ArticleDOI
TL;DR: The interaction and the competition of a set of transverse cavity modes, which belong to a frequency-degenerate family, are analyzed and the predicted phase singularities in each pattern agree in detail with those found by theory.
Abstract: We analyze the interaction and the competition of a set of transverse cavity modes, which belong to a frequency-degenerate family. The laser turns out to be able to realize several different stationary spatial patterns, which differ in the transverse configuration of the intensity or of the field and are met by varying the values of the control parameters. A striking feature that emerges in almost all steady-state patterns is the presence of dark points, in which both the real and the imaginary part of the electric field vanish and such that, if one covers a closed loop around one of these points, the field phase changes by a multiple of 2\ensuremath{\pi}, which corresponds to the topological charge of the point. We show in detail the analogy of these phase singularities to the vortex structures well known in such fields as, for example, hydrodynamics, superconductivity, and superfluidity. In our case, at steady state, these singularities are arranged in the form of regular crystals, nd the equiphase lines of the field exhibit a notable similarity to the field lines of the electrostatic field generated by a corresponding set of point charges. We analyze in detail the patterns that emerge in the cases 2p+l=2 and 2p+l=3, where p and l are the radial and angular modal indices, respectively, and we compare the results with the experimental observations obtained from a ${\mathrm{Na}}_{2}$ laser. The observed patterns agree in detail with those found by theory; in particular, they exhibit the predicted phase singularities in each pattern. The transitions from one pattern to another, that one observes under variation of the control parameters, basically agree with those predicted by theory.

279 citations

Journal ArticleDOI
TL;DR: An optical frequency standard based on the 467 nm electric-octupole reference transition with real-time extrapolation scheme that eliminates the probe-light-induced ac Stark shift of the octupole transition is experimentally investigated.
Abstract: We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition (2)S(1/2)(F=0)→(2)F(7/2)(F=3) in a single trapped (171)Yb(+) ion. The extraordinary features of this transition result from the long natural lifetime and from the 4f(13)6s(2) configuration of the upper state. The electric-quadrupole moment of the (2)F(7/2) state is measured as -0.041(5)ea(0)(2), where e is the elementary charge and a(0) the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe-light-induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1×10(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz.

218 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that if every polarization vector rotates, the light has spin; if the phase structure rotates and if a light has orbital angular momentum (OAM), the light can be many times greater than the spin.
Abstract: As they travel through space, some light beams rotate. Such light beams have angular momentum. There are two particularly important ways in which a light beam can rotate: if every polarization vector rotates, the light has spin; if the phase structure rotates, the light has orbital angular momentum (OAM), which can be many times greater than the spin. Only in the past 20 years has it been realized that beams carrying OAM, which have an optical vortex along the axis, can be easily made in the laboratory. These light beams are able to spin microscopic objects, give rise to rotational frequency shifts, create new forms of imaging systems, and behave within nonlinear material to give new insights into quantum optics.

2,508 citations

Journal ArticleDOI
TL;DR: Theoretical and experimental work on radio-frequency (Paul) traps is reviewed in this paper, with a focus on ions trapped in radiofrequency traps, which are ideal for quantum-optical and quantum-dynamical studies under well controlled conditions.
Abstract: Single trapped ions represent elementary quantum systems that are well isolated from the environment. They can be brought nearly to rest by laser cooling, and both their internal electronic states and external motion can be coupled to and manipulated by light fields. This makes them ideally suited for quantum-optical and quantum-dynamical studies under well-controlled conditions. Theoretical and experimental work on these topics is reviewed in the paper, with a focus on ions trapped in radio-frequency (Paul) traps.

2,406 citations

Journal ArticleDOI
Abstract: "Quantum sensing" describes the use of a quantum system, quantum properties or quantum phenomena to perform a measurement of a physical quantity Historical examples of quantum sensors include magnetometers based on superconducting quantum interference devices and atomic vapors, or atomic clocks More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology, with the most common platforms being spin qubits, trapped ions and flux qubits The field is expected to provide new opportunities - especially with regard to high sensitivity and precision - in applied physics and other areas of science In this review, we provide an introduction to the basic principles, methods and concepts of quantum sensing from the viewpoint of the interested experimentalist

1,878 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems is presented, from the superfluid flow around a defect at low speeds to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles.
Abstract: This article reviews recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems. In the presence of effective photon-photon interactions induced by the optical nonlinearity of the medium, a many-photon system can behave collectively as a quantum fluid with a number of novel features stemming from its intrinsically nonequilibrium nature. A rich variety of recently observed photon hydrodynamical effects is presented, from the superfluid flow around a defect at low speeds, to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles. While the review is mostly focused on a specific class of semiconductor systems that have been extensively studied in recent years (planar semiconductor microcavities in the strong light-matter coupling regime having cavity polaritons as elementary excitations), the very concept of quantum fluids of light applies to a broad spectrum of systems, ranging from bulk nonlinear crystals, to atomic clouds embedded in optical fibers and cavities, to photonic crystal cavities, to superconducting quantum circuits based on Josephson junctions. The conclusive part of the article is devoted to a review of the future perspectives in the direction of strongly correlated photon gases and of artificial gauge fields for photons. In particular, several mechanisms to obtain efficient photon blockade are presented, together with their application to the generation of novel quantum phases.

1,469 citations

Journal ArticleDOI
TL;DR: In this paper, a spiral phaseplate can convert a TEM00 laser beam into a helical wavefront beam with a phase singularity at its axis, and the diffractive-optical effect of the spiral phase plate is implemented by index matching a macroscopic structure in an optical immersion.

1,393 citations