scispace - formally typeset
Search or ask a question
Author

Chris Godsil

Bio: Chris Godsil is an academic researcher from University of Waterloo. The author has contributed to research in topics: Adjacency matrix & Strongly regular graph. The author has an hindex of 40, co-authored 186 publications receiving 12832 citations. Previous affiliations of Chris Godsil include University of Melbourne & University of Manitoba.


Papers
More filters
Book
01 Jan 2009
TL;DR: The Laplacian of a Graph and Cuts and Flows are compared to the Rank Polynomial.
Abstract: Graphs.- Groups.- Transitive Graphs.- Arc-Transitive Graphs.- Generalized Polygons and Moore Graphs.- Homomorphisms.- Kneser Graphs.- Matrix Theory.- Interlacing.- Strongly Regular Graphs.- Two-Graphs.- Line Graphs and Eigenvalues.- The Laplacian of a Graph.- Cuts and Flows.- The Rank Polynomial.- Knots.- Knots and Eulerian Cycles.- Glossary of Symbols.- Index.

8,307 citations

Journal ArticleDOI
TL;DR: In this article, the minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i 6 j) is nonzero whenever {i,j} is an edge in G and is zero otherwise.

312 citations

Journal ArticleDOI
TL;DR: It is proved here that for the certain transitive permutation groups a simple necessary condition is also sufficient, and that, whenG is ap-group with no homomorphism ontoZp wrZp, almost all Cayley graphs ofG have automorphism group isomorphic toG.
Abstract: While it is easy to characterize the graphs on which a given transitive permutation groupG acts, it is very difficult to characterize the graphsX with Aut (X)=G. We prove here that for the certain transitive permutation groups a simple necessary condition is also sufficient. As a corollary we find that, whenG is ap-group with no homomorphism ontoZ p wrZ p , almost all Cayley graphs ofG have automorphism group isomorphic toG.

307 citations

Journal ArticleDOI
TL;DR: In this article, some new constructions for families of cospectral graphs are derived, and some old constructions are considerably generalized, and one of these constructions is sufficiently powerful to produce an estimated 72% of the 51039 graphs on 9 vertices which do not have unique spectrum.
Abstract: Some new constructions for families of cospectral graphs are derived, and some old ones are considerably generalized. One of our new constructions is sufficiently powerful to produce an estimated 72% of the 51039 graphs on 9 vertices which do not have unique spectrum. In fact, the number of graphs of ordern without unique spectrum is believed to be at leastαn3g−1 for someα>0, wheregn is the number of graphs of ordern andn ≥ 7.

274 citations

Journal ArticleDOI
TL;DR: This paper reports on the properties of the matching polynomial α(G) of a graph G, and presents a number of recursion formulas from which it follows that many families of orthogonal polynomials arise as matches of suitable families of graphs.
Abstract: In this paper we report on the properties of the matching polynomial α(G) of a graph G. We present a number of recursion formulas for α(G), from which it follows that many families of orthogonal polynomials arise as matching polynomials of suitable families of graphs. We consider the relation between the matching and characteristic polynomials of a graph. Finally, we consider results which provide information on the zeros of α(G).

246 citations


Cited by
More filters
Journal Article
TL;DR: A new technique called t-SNE that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map, a variation of Stochastic Neighbor Embedding that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map.
Abstract: We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large datasets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of datasets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the datasets.

30,124 citations

Journal ArticleDOI
TL;DR: A distinctive feature of this work is to address consensus problems for networks with directed information flow by establishing a direct connection between the algebraic connectivity of the network and the performance of a linear consensus protocol.
Abstract: In this paper, we discuss consensus problems for networks of dynamic agents with fixed and switching topologies. We analyze three cases: 1) directed networks with fixed topology; 2) directed networks with switching topology; and 3) undirected networks with communication time-delays and fixed topology. We introduce two consensus protocols for networks with and without time-delays and provide a convergence analysis in all three cases. We establish a direct connection between the algebraic connectivity (or Fiedler eigenvalue) of the network and the performance (or negotiation speed) of a linear consensus protocol. This required the generalization of the notion of algebraic connectivity of undirected graphs to digraphs. It turns out that balanced digraphs play a key role in addressing average-consensus problems. We introduce disagreement functions for convergence analysis of consensus protocols. A disagreement function is a Lyapunov function for the disagreement network dynamics. We proposed a simple disagreement function that is a common Lyapunov function for the disagreement dynamics of a directed network with switching topology. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate the effectiveness of our theoretical results.

11,658 citations

Journal ArticleDOI
05 Mar 2007
TL;DR: A theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees is provided.
Abstract: This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees. An overview of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in small-world networks, Markov processes and gossip-based algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster than distributed systems with lattice-type nearest neighbor interactions. Simulation results are presented that demonstrate the role of small-world effects on the speed of consensus algorithms and cooperative control of multivehicle formations

9,715 citations

Journal ArticleDOI
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.

9,441 citations

Journal ArticleDOI
TL;DR: A theoretical explanation for the observed behavior of the Vicsek model, which proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.
Abstract: In a recent Physical Review Letters article, Vicsek et al. propose a simple but compelling discrete-time model of n autonomous agents (i.e., points or particles) all moving in the plane with the same speed but with different headings. Each agent's heading is updated using a local rule based on the average of its own heading plus the headings of its "neighbors." In their paper, Vicsek et al. provide simulation results which demonstrate that the nearest neighbor rule they are studying can cause all agents to eventually move in the same direction despite the absence of centralized coordination and despite the fact that each agent's set of nearest neighbors change with time as the system evolves. This paper provides a theoretical explanation for this observed behavior. In addition, convergence results are derived for several other similarly inspired models. The Vicsek model proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.

8,233 citations