scispace - formally typeset
Search or ask a question
Author

Chris Houser

Bio: Chris Houser is an academic researcher from University of Windsor. The author has contributed to research in topics: Barrier island & Foredune. The author has an hindex of 31, co-authored 120 publications receiving 3276 citations. Previous affiliations of Chris Houser include University of Texas Health Science Center at Tyler & Texas A&M University.
Topics: Barrier island, Foredune, Rip current, Storm, Overwash


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examined the alongshore variation in dune morphology along a 11 km stretch of Santa Rosa Island in northwest Florida and related the variation in morphology to the response of the island during Hurricane Ivan and historic and storm-related rates of shoreline erosion.

353 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight not just how soil moisture affects a plant, but also how it plays an integrative role among the various subfields of physical geography, including geology.
Abstract: Soil moisture is a critical component of the earth system and plays an integrative role among the various subfields of physical geography. This paper highlights not just how soil moisture affects a...

297 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantify the attenuation of incident wave height through a seagrass meadow and characterize the blade movement under oscillatory flow under low-energy conditions characteristic of fetch-limited and sheltered environments.
Abstract: [1] While the ability of subaquatic vegetation to attenuate wave energy is well recognized in general, there is a paucity of data from the field to describe the rate and mechanisms of wave decay, particularly with respect to the relative motion of the vegetation. The purpose of this study was to quantify the attenuation of incident wave height through a seagrass meadow and characterize the blade movement under oscillatory flow under the low-energy conditions characteristic of fetch-limited and sheltered environments. The horizontal motion of the seagrass blades and the velocity just above the seagrass canopy were measured using a digital video camera and an acoustic Doppler velicometer (ADV) respectively in order to refine the estimates of the drag coefficient based on the relative velocity. Significant wave heights (H s ) were observed to increase by ∼0.02 m (∼20%) through the first 5 m of the seagrass bed but subsequently decrease exponentially over the remainder of the bed. The exponential decay coefficient varied in response to the Reynolds number calculated using blade width (as the length scale) and the oscillatory velocity measured immediately above the canopy. The ability of the seagrass to attenuate wave energy decreases as incident wave heights increase and conditions become more turbulent. Estimates of the time-averaged canopy height and the calculated hydraulic roughness suggest that, as the oscillatory velocity increases, the seagrass becomes fully extended and leans in the direction of flow for a longer part of the wave cycle. The relationship between the drag coefficient and the Reynolds number further suggests that the vegetation is swaying (going with the flow) at low-energy conditions but becomes increasingly rigid as oscillatory velocities increase over the limited range of the conditions observed (200 < Re < 800). In addition to the changing behavior of the seagrass motion, the attenuation was not uniform with wave frequency, and waves at a secondary frequency of 0.38 Hz (2.6 s) appeared to be unaffected by the seagrass. Cospectral analysis between the oscillatory and blade velocity suggests that the seagrass was moving in phase with the current at the (lower) secondary frequency and out of phase at the (higher) peak frequency. In this respect, seagrass is not only an attenuator of wave energy but also serves as a low-pass filter; higher frequencies in the spectra tend to be more attenuated.

240 citations

Journal ArticleDOI
TL;DR: In this article, a combination of previously published data from Galveston Island, Texas and new remotely sensed data from Santa Rosa Island, Florida is used to quantify the rate of dune recovery for dissipative and intermediate beach types, respectively.

163 citations

Journal ArticleDOI
TL;DR: In this paper, LiDAR data collected immediately following Hurricane Katrina and in July 2006 after almost a year of recovery was used to characterize the recovery of Santa Rosa Island in northwest Florida, which was preceded by Hurricanes Ivan (2004) and Dennis (2005).
Abstract: The recovery of Santa Rosa Island in northwest Florida is characterized following Hurricane Katrina (September 2005), which was preceded by Hurricanes Ivan (2004) and Dennis (2005). Beach and dune recovery were quantified to the east and west of Pensacola Beach through a comparison of LiDAR data collected immediately following Hurricane Katrina and in July 2006 after almost a year of recovery. East of Pensacola Beach (the Santa Rosa Unit), the shoreline retreated by an average of 64 m during the 2004–2005 hurricane season and recovered by an average of 19 m. To the west of Pensacola Beach (the Fort Pickens Unit), the shoreline retreated by an average of 30 m, and while no significant shoreface recovery was observed, the presence of vegetation on low-profile dunes promoted backshore accretion. It is found that beachface recovery in the Santa Rosa Unit and backshore accretion in the Fort Pickens Unit occurred at the widest sections of the island where the pre-storm profile volume had been relatively large and overwash penetration was at a minimum. The narrow sections of the island (between cuspate headlands) had a smaller profile volume before the storms, leading to greater overwash penetration and in some cases island breaching in both sections, which limited the volume of sediment available for shoreface recovery. The alongshore variation in recovery is not only related to the island width, but also the offshore bathymetry, height of the pre-storm dunes and the overwash penetration. If sufficient time is allowed for the return of vegetation and the recovery of the dunes, the variations in storm impact observed during Hurricane Ivan will be reinforced during subsequent storms. In this respect, the level of impact during subsequent storms and the ability of the island to recover will depend on the frequency of storm events. Copyright © 2009 John Wiley & Sons, Ltd.

151 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices are reviewed.
Abstract: The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols This article presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices We also discuss the physics of wind-blown sand and dune formation on Venus and Titan

1,175 citations

Journal ArticleDOI
TL;DR: In this article, an extensive review of the physics of wind-blown sand and dust on Earth and Mars is presented, including a review of aeolian saltation, the formation and development of sand dunes and ripples, dust aerosol emission, weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices.
Abstract: The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

1,069 citations

Journal ArticleDOI
TL;DR: The UAV-based approach to Structure from Motion approach to low-altitude aerial imageries collected by Unmanned Aerial Vehicle was demonstrated to be a straightforward one and accuracy of the vertical dataset was comparable with results obtained by TLS technology.
Abstract: The availability of high-resolution Digital Surface Models of coastal environments is of increasing interest for scientists involved in the study of the coastal system processes Among the range of terrestrial and aerial methods available to produce such a dataset, this study tests the utility of the Structure from Motion (SfM) approach to low-altitude aerial imageries collected by Unmanned Aerial Vehicle (UAV) The SfM image-based approach was selected whilst searching for a rapid, inexpensive, and highly automated method, able to produce 3D information from unstructured aerial images In particular, it was used to generate a dense point cloud and successively a high-resolution Digital Surface Models (DSM) of a beach dune system in Marina di Ravenna (Italy) The quality of the elevation dataset produced by the UAV-SfM was initially evaluated by comparison with point cloud generated by a Terrestrial Laser Scanning (TLS) surveys Such a comparison served to highlight an average difference in the vertical values of 005 m (RMS = 019 m) However, although the points cloud comparison is the best approach to investigate the absolute or relative correspondence between UAV and TLS methods, the assessment of geomorphic features is usually based on multi-temporal surfaces analysis, where an interpolation process is required DSMs were therefore generated from UAV and TLS points clouds and vertical absolute accuracies assessed by comparison with a Global Navigation Satellite System (GNSS) survey The vertical comparison of UAV and TLS DSMs with respect to GNSS measurements pointed out an average distance at cm-level (RMS = 0011 m) The successive point by point direct comparison between UAV and TLS elevations show a very small average distance, 0015 m, with RMS = 0220 m Larger values are encountered in areas where sudden changes in topography are present The UAV-based approach was demonstrated to be a straightforward one and accuracy of the vertical dataset was comparable with results obtained by TLS technology

642 citations

Journal ArticleDOI
TL;DR: The Advanced Scatterometer (ASCAT) is a C-band active microwave remote sensing instrument flown on board of the Meteorological Operational (METOP) satellite series as discussed by the authors.
Abstract: Many physical, chemical and biological processes taking place at the land surface are strongly influenced by the amount of water stored within the upper soil layers. Therefore, many scientific disciplines require soil moisture observations for developing, evaluating and improving their models. One of these disciplines is meteorology where soil moisture is important due to its control on the exchange of heat and water between the soil and the lower atmosphere. Soil moisture observations may thus help to improve the forecasts of air temperature, air humidity and precipitation. However, until recently, soil moisture observations had only been available over a limited number of regional soil moisture networks. This has hampered scientific progress as regards the characterisation of land surface processes not just in meteorology but many other scientific disciplines as well. Fortunately, in recent years, satellite soil moisture data have increasingly become available. One of the freely available global soil moisture data sets is derived from the backscatter measurements acquired by the Advanced Scatterometer (ASCAT) that is a C-band active microwave remote sensing instrument flown on board of the Meteorological Operational (METOP) satellite series. ASCAT was designed to observe wind speed and direction over the oceans and was initially not foreseen for monitoring soil moisture over land. Yet, as argued in this review paper, the characteristics of the ASCAT instrument, most importantly its wavelength (5.7 cm), its high radiometric accuracy, and its multiple-viewing capabilities make it an attractive sensor for measuring soil moisture. Moreover, given the operational status of ASCAT, and its promising long-term prospects, many geoscientific applications might benefit from using ASCAT soil moisture data. Nonetheless, the ASCAT soil moisture product is relatively complex, requiring a good understanding of its properties before it can be successfully used in applications. To provide a comprehensive overview of themajor characteristics and caveats of the ASCATsoil moisture product, this paper describes the ASCAT instrument and the soil moisture processor and near-real-time distribution service implemented by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT).A review of themost recent validation studies shows that the quality of ASCAT soil moisture product is – with the exception of arid environments –comparable to, and over some regions (e.g. Europe) even better than currently available soil moisture data derived from passive microwave sensors. Further, a review of applications studies shows that the use of the ASCAT soil moisture product is particularly advanced in the fields of numerical weather prediction and hydrologic modelling. But also in other application areas such as yield monitoring, epidemiologic modelling, or societal risks assessment some first progress can be noted. Considering the generally positive evaluation results, it is expected that the ASCAT soil moisture product will increasingly be used by a growing number of rather diverse land applications.

484 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the skill of a new, merged soil moisture product (ECV_SM) that has been developed in the framework of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative projects.

463 citations