scispace - formally typeset
Search or ask a question
Author

Chris Piech

Bio: Chris Piech is an academic researcher from Stanford University. The author has contributed to research in topics: Computer science & Deep learning. The author has an hindex of 18, co-authored 54 publications receiving 3102 citations.

Papers published on a yearly basis

Papers
More filters
Proceedings ArticleDOI
08 Apr 2013
TL;DR: A simple, scalable, and informative classification method is presented that identifies a small number of longitudinal engagement trajectories in MOOCs and compares learners in each trajectory and course across demographics, forum participation, video access, and reports of overall experience.
Abstract: As MOOCs grow in popularity, the relatively low completion rates of learners has been a central criticism. This focus on completion rates, however, reflects a monolithic view of disengagement that does not allow MOOC designers to target interventions or develop adaptive course features for particular subpopulations of learners. To address this, we present a simple, scalable, and informative classification method that identifies a small number of longitudinal engagement trajectories in MOOCs. Learners are classified based on their patterns of interaction with video lectures and assessments, the primary features of most MOOCs to date.In an analysis of three computer science MOOCs, the classifier consistently identifies four prototypical trajectories of engagement. The most notable of these is the learners who stay engaged through the course without taking assessments. These trajectories are also a useful framework for the comparison of learner engagement between different course structures or instructional approaches. We compare learners in each trajectory and course across demographics, forum participation, video access, and reports of overall experience. These results inform a discussion of future interventions, research, and design directions for MOOCs. Potential improvements to the classification mechanism are also discussed, including the introduction of more fine-grained analytics.

1,011 citations

Proceedings Article
07 Dec 2015
TL;DR: The utility of using Recurrent Neural Networks to model student learning and the learned model can be used for intelligent curriculum design and allows straightforward interpretation and discovery of structure in student tasks are explored.
Abstract: Knowledge tracing—where a machine models the knowledge of a student as they interact with coursework—is a well established problem in computer supported education. Though effectively modeling student knowledge would have high educational impact, the task has many inherent challenges. In this paper we explore the utility of using Recurrent Neural Networks (RNNs) to model student learning. The RNN family of models have important advantages over previous methods in that they do not require the explicit encoding of human domain knowledge, and can capture more complex representations of student knowledge. Using neural networks results in substantial improvements in prediction performance on a range of knowledge tracing datasets. Moreover the learned model can be used for intelligent curriculum design and allows straightforward interpretation and discovery of structure in student tasks. These results suggest a promising new line of research for knowledge tracing and an exemplary application task for RNNs.

595 citations

Posted Content
TL;DR: This paper explored the utility of using Recurrent Neural Networks (RNNs) to model student learning and found that using neural networks results in substantial improvements in prediction performance on a range of knowledge tracing datasets.
Abstract: Knowledge tracing---where a machine models the knowledge of a student as they interact with coursework---is a well established problem in computer supported education. Though effectively modeling student knowledge would have high educational impact, the task has many inherent challenges. In this paper we explore the utility of using Recurrent Neural Networks (RNNs) to model student learning. The RNN family of models have important advantages over previous methods in that they do not require the explicit encoding of human domain knowledge, and can capture more complex representations of student knowledge. Using neural networks results in substantial improvements in prediction performance on a range of knowledge tracing datasets. Moreover the learned model can be used for intelligent curriculum design and allows straightforward interpretation and discovery of structure in student tasks. These results suggest a promising new line of research for knowledge tracing and an exemplary application task for RNNs.

330 citations

Journal ArticleDOI
TL;DR: This article presents studies focused on how students learn computer programming, based on data drawn from 154,000 code snapshots of computer programs under development by approximately 370 students enrolled in an introductory undergraduate programming course, using methods from machine learning to discover patterns in the data and to predict final exam grades.
Abstract: New high-frequency, automated data collection and analysis algorithms could offer new insights into complex learning processes, especially for tasks in which students have opportunities to generate unique open-ended artifacts such as computer programs. These approaches should be particularly useful because the need for scalable project-based and student-centered learning is growing considerably. In this article, we present studies focused on how students learn computer programming, based on data drawn from 154,000 code snapshots of computer programs under development by approximately 370 students enrolled in an introductory undergraduate programming course. We use methods from machine learning to discover patterns in the data and try to predict final exam grades. We begin with a set of exploratory experiments that use fully automated techniques to investigate how much students change their programming behavior throughout all assignments in the course. The results show that students’ change in programming ...

217 citations

Proceedings ArticleDOI
29 Feb 2012
TL;DR: This paper presents a methodology which uses machine learning techniques to autonomously create a graphical model of how students in an introductory programming course progress through a homework assignment, and shows that this model is predictive of which students will struggle with material presented later in the class.
Abstract: Despite the potential wealth of educational indicators expressed in a student's approach to homework assignments, how students arrive at their final solution is largely overlooked in university courses. In this paper we present a methodology which uses machine learning techniques to autonomously create a graphical model of how students in an introductory programming course progress through a homework assignment. We subsequently show that this model is predictive of which students will struggle with material presented later in the class.

189 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a taxonomy of recent contributions related to explainability of different machine learning models, including those aimed at explaining Deep Learning methods, is presented, and a second dedicated taxonomy is built and examined in detail.

2,827 citations

Journal Article

2,327 citations

Posted Content
TL;DR: Previous efforts to define explainability in Machine Learning are summarized, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought, and a taxonomy of recent contributions related to the explainability of different Machine Learning models are proposed.
Abstract: In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.

1,602 citations

Proceedings ArticleDOI
04 Mar 2014
TL;DR: The largest-scale study of video engagement to date is presented, using data from 6.9 million video watching sessions across four courses on the edX MOOC platform, finding that shorter videos are much more engaging, that informal talking-head videos are more engage, and that Khan-style tablet drawings are more engaging.
Abstract: Videos are a widely-used kind of resource for online learning. This paper presents an empirical study of how video production decisions affect student engagement in online educational videos. To our knowledge, ours is the largest-scale study of video engagement to date, using data from 6.9 million video watching sessions across four courses on the edX MOOC platform. We measure engagement by how long students are watching each video, and whether they attempt to answer post-video assessment problems.Our main findings are that shorter videos are much more engaging, that informal talking-head videos are more engaging, that Khan-style tablet drawings are more engaging, that even high-quality pre-recorded classroom lectures might not make for engaging online videos, and that students engage differently with lecture and tutorial videos.Based upon these quantitative findings and qualitative insights from interviews with edX staff, we developed a set of recommendations to help instructors and video producers take better advantage of the online video format. Finally, to enable researchers to reproduce and build upon our findings, we have made our anonymized video watching data set and analysis scripts public. To our knowledge, ours is one of the first public data sets on MOOC resource usage.

1,473 citations

01 Jan 2016
TL;DR: The cambridge handbook of the learning sciences is universally compatible with any devices to read and an online access to it is set as public so you can download it instantly.
Abstract: the cambridge handbook of the learning sciences is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the the cambridge handbook of the learning sciences is universally compatible with any devices to read.

1,059 citations