scispace - formally typeset
Search or ask a question
Author

Chris Rennie

Bio: Chris Rennie is an academic researcher from University of Sydney. The author has contributed to research in topics: Electroencephalography & Stimulus (physiology). The author has an hindex of 32, co-authored 62 publications receiving 4031 citations. Previous affiliations of Chris Rennie include Westmead Hospital & Millennium Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: A nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters and provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.
Abstract: Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms---mainly slow wave, delta, theta, alpha, and sleep spindle---with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.

425 citations

Journal ArticleDOI
TL;DR: The present results provide greater support for the view that this decrement is based on the separate refractory periods or recovery cycle processes of at least two neural generators contributing to activity in the N1 peak latency range.

332 citations

Journal ArticleDOI
TL;DR: A recent neurophysical model of propagation of electrical waves in the cortex is extended to include a physiologically motivated subcortical feedback loop via the thalamus, leading to predictions of their frequencies in terms of physiological parameters, and of correlations in their occurrence.
Abstract: A recent neurophysical model of propagation of electrical waves in the cortex is extended to include a physiologically motivated subcortical feedback loop via the thalamus. The electroencephalographic spectrum when the system is driven by white noise is then calculated analytically in terms of physiological parameters, including the effects of filtering of signals by the cerebrospinal fluid, skull, and scalp. The spectral power at low frequencies is found to vary as f(-1) when awake and f(-3) when asleep, with a breakpoint to a steeper power-law tail at frequencies above about 20 Hz in both cases; the f(-1) range concurs with recent magnetoencephalographic observations of such a regime. Parameter sensitivities are explored, enabling a model with fewer free parameters to be proposed, and showing that spectra predicted for physiologically reasonable parameter values strongly resemble those observed in the laboratory. Alpha and beta peaks seen near 10 Hz and twice that frequency, respectively, in the relaxed wakeful state are generated via subcortical feedback in this model, thereby leading to predictions of their frequencies in terms of physiological parameters, and of correlations in their occurrence. Subcortical feedback is also predicted to be responsible for production of anticorrelated peaks in deep sleep states that correspond to the occurrence of theta rhythm at around half the alpha frequency and sleep spindles at 3/2 times the alpha frequency. An additional positively correlated waking peak near three times the alpha frequency is also predicted and tentatively observed, as are two new types of sleep spindle near 5/2 and 7/2 times the alpha frequency, and anticorrelated with alpha. These results provide a theoretical basis for the conventional division of EEG spectra into frequency bands, but imply that the exact bounds of these bands depend on the individual. Three types of potential instability are found: one at zero frequency, another in the theta band at around half the alpha frequency, and a third at the alpha frequency itself.

331 citations

Journal ArticleDOI
TL;DR: It is shown that new model‐based electroencephalographic (EEG) methods can quantify neurophysiologic parameters that underlie EEG generation in ways that are complementary to and consistent with standard physiologic techniques.
Abstract: It is shown that new model-based electroencephalographic (EEG) methods can quantify neurophysiologic parameters that underlie EEG generation in ways that are complementary to and consistent with standard physiologic techniques. This is done by isolating parameter ranges that give good matches between model predictions and a variety of experimental EEG-related phenomena simultaneously. Resulting constraints range from the submicrometer synaptic level to length scales of tens of centimeters, and from timescales of around 1 ms to 1 s or more, and are found to be consistent with independent physiologic and anatomic measures. In the process, a new method of obtaining model parameters from the data is developed, including a Monte Carlo implementation for use when not all input data are available. Overall, the approaches used are complementary to other methods, constraining allowable parameter ranges in different ways and leading to much tighter constraints overall. EEG methods often provide the most restrictive individual constraints. This approach opens a new, noninvasive window on quantitative brain analysis, with the ability to monitor temporal changes, and the potential to map spatial variations. Unlike traditional phenomenologic quantitative EEG measures, the methods proposed here are based explicitly on physiology and anatomy.

231 citations

Journal ArticleDOI
TL;DR: A quantitative method of resolving the problem of confound measurement of each discrete phasic SCR as well as the tonic skin conductance level (SCL) using a modelling technique that takes advantage of the stereotyped nature of the within-subject SCR waveform is reported.

218 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Book
01 Jan 2006
TL;DR: The brain's default state: self-organized oscillations in rest and sleep, and perturbation of the default patterns by experience.
Abstract: Prelude. Cycle 1. Introduction. Cycle 2. Structure defines function. Cycle 3. Diversity of cortical functions is provided by inhibition. Cycle 4. Windows on the brain. Cycle 5. A system of rhythms: from simple to complex dynamics. Cycle 6. Synchronization by oscillation. Cycle 7. The brain's default state: self-organized oscillations in rest and sleep. Cycle 8. Perturbation of the default patterns by experience. Cycle 9. The gamma buzz: gluing by oscillations in the waking brain. Cycle 10. Perceptions and actions are brain state-dependent. Cycle 11. Oscillations in the "other cortex:" navigation in real and memory space. Cycle 12. Coupling of systems by oscillations. Cycle 13. The tough problem. References.

4,266 citations

Journal ArticleDOI
TL;DR: The inception of this journal has been foreshadowed by an ever-increasing number of publications on functional connectivity, causal modeling, connectomics, and multivariate analyses of distributed patterns of brain responses.
Abstract: Over the past 20 years, neuroimaging has become a predominant technique in systems neuroscience. One might envisage that over the next 20 years the neuroimaging of distributed processing and connectivity will play a major role in disclosing the brain's functional architecture and operational principles. The inception of this journal has been foreshadowed by an ever-increasing number of publications on functional connectivity, causal modeling, connectomics, and multivariate analyses of distributed patterns of brain responses. I accepted the invitation to write this review with great pleasure and hope to celebrate and critique the achievements to date, while addressing the challenges ahead.

2,822 citations

Book
01 Jan 1999
TL;DR: The Scope of Body Image Disturbance - the Big Picture An Overview of Assessment and Treatment Strategies Sociocultural Theory - the Media and Society Social Comparison Processes Appearance-Related Feedback Interpersonal Factors Peers, Parents and Perfect Strangers Feminist Perspectives Sexual Abuse and Sexual Harassment Behavioural Aspects of Disturbances - Conditioning, Context and Avoidance Cognitive Processing Models Future Directions - Integrative Theories, Multidimensional Assessment and Multicomponent Interventions
Abstract: The Scope of Body Image Disturbance - the Big Picture An Overview of Assessment and Treatment Strategies Sociocultural Theory - the Media and Society Social Comparison Processes Appearance-Related Feedback Interpersonal Factors Peers, Parents and Perfect Strangers Feminist Perspectives Sexual Abuse and Sexual Harassment Behavioural Aspects of Disturbance - Conditioning, Context and Avoidance Cognitive Processing Models Future Directions - Integrative Theories, Multidimensional Assessment and Multicomponent Interventions

2,245 citations