scispace - formally typeset
Search or ask a question

Showing papers by "Chris Sander published in 2004"


Journal ArticleDOI
TL;DR: This work has predicted target sites on the 3′ untranslated regions of human gene transcripts for all currently known 218 mammalian miRNAs to facilitate focused experiments and suggests that miRNA genes, which are about 1% of all human genes, regulate protein production for 10% or more of allhuman genes.
Abstract: MicroRNAs (miRNAs) interact with target mRNAs at specific sites to induce cleavage of the message or inhibit translation. The specific function of most mammalian miRNAs is unknown. We have predicted target sites on the 3′ untranslated regions of human gene transcripts for all currently known 218 mammalian miRNAs to facilitate focused experiments. We report about 2,000 human genes with miRNA target sites conserved in mammals and about 250 human genes conserved as targets between mammals and fish. The prediction algorithm optimizes sequence complementarity using position-specific rules and relies on strict requirements of interspecies conservation. Experimental support for the validity of the method comes from known targets and from strong enrichment of predicted targets in mRNAs associated with the fragile X mental retardation protein in mammals. This is consistent with the hypothesis that miRNAs act as sequence-specific adaptors in the interaction of ribonuclear particles with translationally regulated messages. Overrepresented groups of targets include mRNAs coding for transcription factors, components of the miRNA machinery, and other proteins involved in translational regulation, as well as components of the ubiquitin machinery, representing novel feedback loops in gene regulation. Detailed information about target genes, target processes, and open-source software for target prediction (miRanda) is available at http://www.microrna.org. Our analysis suggests that miRNA genes, which are about 1% of all human genes, regulate protein production for 10% or more of all human genes.

3,654 citations


Journal ArticleDOI
06 Feb 2004-Science
TL;DR: Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.
Abstract: A genetic interaction network containing approximately 1000 genes and approximately 4000 interactions was mapped by crossing mutations in 132 different query genes into a set of approximately 4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.

2,037 citations


Journal ArticleDOI
30 Apr 2004-Science
TL;DR: The small RNA profile of cells infected by Epstein-Barr virus is recorded and it is shown that EBV expresses several microRNA (miRNA) genes, which are identified viral regulators of host and/or viral gene expression.
Abstract: RNA silencing processes are guided by small RNAs that are derived from double-stranded RNA. To probe for function of RNA silencing during infection of human cells by a DNA virus, we recorded the small RNA profile of cells infected by Epstein-Barr virus (EBV). We show that EBV expresses several microRNA (miRNA) genes. Given that miRNAs function in RNA silencing pathways either by targeting messenger RNAs for degradation or by repressing translation, we identified viral regulators of host and/or viral gene expression.

1,608 citations


Journal ArticleDOI
TL;DR: These studies show that miR-122, a 22-nucleotide microRNA, is derived from a liver-specific non-coding polyadenylated RNA transcribed from the gene hcr, which may be a specific mRNA target, CAT-1, which is expressed in all mammaliantissues but with lower levels in adult liver.
Abstract: These studies show that miR-122, a 22-nucleotide microRNA, is derived from a liver-specific noncoding polyadenylated RNA transcribed from the gene hcr. The exact sequence of miR-122 as well as the adjacent secondary structure within the hcr mRNA are conserved from mammalian species back to fish. Levels of miR-122 in the mouse liver increase to half maximal values around day 17 of embryogenesis, and reach near maximal levels of 50,000 copies per average cell before birth. Lewis et al. (2003) predicted the cationic amino acid transporter (CAT-1 or SLC7A1) as a miR-122 target. CAT-1 protein and its mRNA are expressed in all mammalian tissues but with lower levels in adult liver. Furthermore, during mouse liver development CAT-1 mRNA decreases in an almost inverse correlation with miR-122. Eight potential miR-122 target sites were predicted within the human CAT-1 mRNA, with six in the 3'-untranslated region. Using a reporter construct it was found that just three of the predicted sites, linked in a 400-nucleotide sequence from human CAT-1, acted with synergy and were sufficient to strongly inhibit protein synthesis and reduce mRNA levels. In summary, these studies followed the accumulation during development of miR-122 from its mRNA precursor, hcr, through to identification of what may be a specific mRNA target, CAT-1.

800 citations


Journal ArticleDOI
TL;DR: This work proposes a community standard data model for the representation and exchange of protein interaction data, jointly developed by members of the Proteomics Standards Initiative (PSI) and the Human Proteome Organization (HUPO).
Abstract: A major goal of proteomics is the complete description of the protein interaction network underlying cell physiology. A large number of small scale and, more recently, large-scale experiments have contributed to expanding our understanding of the nature of the interaction network. However, the necessary data integration across experiments is currently hampered by the fragmentation of publicly available protein interaction data, which exists in different formats in databases, on authors' websites or sometimes only in print publications. Here, we propose a community standard data model for the representation and exchange of protein interaction data. This data model has been jointly developed by members of the Proteomics Standards Initiative (PSI), a work group of the Human Proteome Organization (HUPO), and is supported by major protein interaction data providers, in particular the Biomolecular Interaction Network Database (BIND), Cellzome (Heidelberg, Germany), the Database of Interacting Proteins (DIP), Dana Farber Cancer Institute (Boston, MA, USA), the Human Protein Reference Database (HPRD), Hybrigenics (Paris, France), the European Bioinformatics Institute's (EMBL-EBI, Hinxton, UK) IntAct, the Molecular Interactions (MINT, Rome, Italy) database, the Protein-Protein Interaction Database (PPID, Edinburgh, UK) and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, EMBL, Heidelberg, Germany).

658 citations


Journal ArticleDOI
TL;DR: A new computational method for identifying regulated pathway components in transcript profiling (TP) experiments by evaluating transcriptional activity in the context of known biological pathways by using the notion of distance in a graph to define pathway neighborhoods.
Abstract: We present a new computational method for identifying regulated pathway components in transcript profiling (TP) experiments by evaluating transcriptional activity in the context of known biological pathways. We construct a graph representing thousands of protein functional relationships by integrating knowledge from public databases and review articles. We use the notion of distance in a graph to define pathway neighborhoods. The pathways perturbed in an experiment are then identified as the subgraph induced by the genes, referred to as activity centers, having significant density of transcriptional activity in their functional neighborhoods. We illustrate the predictive power of this approach by performing and analyzing an experiment of TP53 overexpression in NCI-H125 cells. The detected activity centers are in agreement with the known TP53 activation effects and our independent experimental results. We also apply the method to a serum starvation experiment using HEY cells and investigate the predicted activity of the transcription factor MYC. Finally, we discuss interesting properties of the activity center approach and its possible applications beyond the comparison of two experiments.

14 citations