scispace - formally typeset
Search or ask a question

Showing papers by "Chris Sander published in 2016"


Journal ArticleDOI
TL;DR: These data support a model of tumorigenesis whereby PDTCs and ATCs arise from well-differentiated tumors through the accumulation of key additional genetic abnormalities, many of which have prognostic and possible therapeutic relevance.
Abstract: BACKGROUND. Poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) are rare and frequently lethal tumors that so far have not been subjected to comprehensive genetic characterization. METHODS. We performed next-generation sequencing of 341 cancer genes from 117 patient-derived PDTCs and ATCs and analyzed the transcriptome of a representative subset of 37 tumors. Results were analyzed in the context of The Cancer Genome Atlas study (TCGA study) of papillary thyroid cancers (PTC). RESULTS. Compared to PDTCs, ATCs had a greater mutation burden, including a higher frequency of mutations in TP53, TERT promoter, PI3K/AKT/mTOR pathway effectors, SWI/SNF subunits, and histone methyltransferases. BRAF and RAS were the predominant drivers and dictated distinct tropism for nodal versus distant metastases in PDTC. RAS and BRAF sharply distinguished between PDTCs defined by the Turin (PDTC-Turin) versus MSKCC (PDTC-MSK) criteria, respectively. Mutations of EIF1AX, a component of the translational preinitiation complex, were markedly enriched in PDTCs and ATCs and had a striking pattern of co-occurrence with RAS mutations. While TERT promoter mutations were rare and subclonal in PTCs, they were clonal and highly prevalent in advanced cancers. Application of the TCGA-derived BRAF-RAS score (a measure of MAPK transcriptional output) revealed a preserved relationship with BRAF/RAS mutation in PDTCs, whereas ATCs were BRAF-like irrespective of driver mutation. CONCLUSIONS. These data support a model of tumorigenesis whereby PDTCs and ATCs arise from well-differentiated tumors through the accumulation of key additional genetic abnormalities, many of which have prognostic and possible therapeutic relevance. The widespread genomic disruptions in ATC compared with PDTC underscore their greater virulence and higher mortality. FUNDING. This work was supported in part by NIH grants CA50706, CA72597, P50-CA72012, P30-CA008748, and 5T32-{"type":"entrez-nucleotide","attrs":{"text":"CA160001","term_id":"35072944","term_text":"CA160001"}}CA160001; the Lefkovsky Family Foundation; the Society of Memorial Sloan Kettering; the Byrne fund; and Cycle for Survival.

730 citations


Journal ArticleDOI
TL;DR: The immunogenicity of ccRCC tumors cannot be explained by mutation load or neo-antigen load, but is highly correlated with MHC class I antigen presenting machinery expression (APM), and both APM and T cell levels are negatively associated with subclone number.
Abstract: Tumor-infiltrating immune cells have been linked to prognosis and response to immunotherapy; however, the levels of distinct immune cell subsets and the signals that draw them into a tumor, such as the expression of antigen presenting machinery genes, remain poorly characterized. Here, we employ a gene expression-based computational method to profile the infiltration levels of 24 immune cell populations in 19 cancer types. We compare cancer types using an immune infiltration score and a T cell infiltration score and find that clear cell renal cell carcinoma (ccRCC) is among the highest for both scores. Using immune infiltration profiles as well as transcriptomic and proteomic datasets, we characterize three groups of ccRCC tumors: T cell enriched, heterogeneously infiltrated, and non-infiltrated. We observe that the immunogenicity of ccRCC tumors cannot be explained by mutation load or neo-antigen load, but is highly correlated with MHC class I antigen presenting machinery expression (APM). We explore the prognostic value of distinct T cell subsets and show in two cohorts that Th17 cells and CD8+ T/Treg ratio are associated with improved survival, whereas Th2 cells and Tregs are associated with negative outcomes. Investigation of the association of immune infiltration patterns with the subclonal architecture of tumors shows that both APM and T cell levels are negatively associated with subclone number. Our analysis sheds light on the immune infiltration patterns of 19 human cancers and unravels mRNA signatures with prognostic utility and immunotherapeutic biomarker potential in ccRCC.

583 citations


Journal ArticleDOI
TL;DR: An analytic pipeline and visualization tool (metabolograms) is developed to bridge the gap between TCGA transcriptomic profiling and metabolomic data, which enables to assemble an integrated pathway-level metabolic atlas and to demonstrate discordance between transcriptome and metabolome.

477 citations


Journal ArticleDOI
22 Feb 2016-eLife
TL;DR: It is found that some tumors may compensate for mtDNA depletion to sustain levels of respiratory proteins, and point to related therapeutic opportunities.
Abstract: Mutations, deletions, and changes in copy number of mitochondrial DNA (mtDNA), are observed throughout cancers. Here, we survey mtDNA copy number variation across 22 tumor types profiled by The Cancer Genome Atlas project. We observe a tendency for some cancers, especially of the bladder, breast, and kidney, to be depleted of mtDNA, relative to matched normal tissue. Analysis of genetic context reveals an association between incidence of several somatic alterations, including IDH1 mutations in gliomas, and mtDNA content. In some but not all cancer types, mtDNA content is correlated with the expression of respiratory genes, and anti-correlated to the expression of immune response and cell-cycle genes. In tandem with immunohistochemical evidence, we find that some tumors may compensate for mtDNA depletion to sustain levels of respiratory proteins. Our results highlight the extent of mtDNA copy number variation in tumors and point to related therapeutic opportunities.

363 citations


01 Jan 2016
TL;DR: It is observed that the immunogenicity of ccRCC tumors cannot be explained by mutation load or neo-antigen load, but is highly correlated with MHC class I antigen presenting machinery expression (APM).
Abstract: BackgroundTumor-infiltrating immune cells have been linked to prognosis and response to immunotherapy; however, the levels of distinct immune cell subsets and the signals that draw them into a tumor, such as the expression of antigen presenting machinery genes, remain poorly characterized. Here, we employ a gene expression-based computational method to profile the infiltration levels of 24 immune cell populations in 19 cancer types.ResultsWe compare cancer types using an immune infiltration score and a T cell infiltration score and find that clear cell renal cell carcinoma (ccRCC) is among the highest for both scores. Using immune infiltration profiles as well as transcriptomic and proteomic datasets, we characterize three groups of ccRCC tumors: T cell enriched, heterogeneously infiltrated, and non-infiltrated. We observe that the immunogenicity of ccRCC tumors cannot be explained by mutation load or neo-antigen load, but is highly correlated with MHC class I antigen presenting machinery expression (APM). We explore the prognostic value of distinct T cell subsets and show in two cohorts that Th17 cells and CD8+ T/Treg ratio are associated with improved survival, whereas Th2 cells and Tregs are associated with negative outcomes. Investigation of the association of immune infiltration patterns with the subclonal architecture of tumors shows that both APM and T cell levels are negatively associated with subclone number.ConclusionsOur analysis sheds light on the immune infiltration patterns of 19 human cancers and unravels mRNA signatures with prognostic utility and immunotherapeutic biomarker potential in ccRCC.

316 citations


Journal ArticleDOI
TL;DR: Differences between the genomic subtypes suggest that therapeutic strategies could be tailored to each RCC disease subset.

295 citations


Journal ArticleDOI
28 Jul 2016-Cell
TL;DR: The generation and verification of a compendium of highly specific assays that enable quantification of 99.7% of the 20,277 annotated human proteins by the widely accessible, sensitive, and robust targeted mass spectrometric method selected reaction monitoring, SRM are described.

276 citations


Journal ArticleDOI
05 May 2016-Cell
TL;DR: In this paper, the authors mine the evolutionary sequence record to derive precise information about the function and structure of RNAs and RNA-protein complexes and predict contacts in 160 non-coding RNA families.

158 citations


Journal ArticleDOI
22 Sep 2016-Cell
TL;DR: Assessing the potential for structure of more than 1,000 apparently disordered regions of human proteins reveals a continuum of structural order with at least 50% with clear propensity for three- or two-dimensional states.

135 citations


Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Ovsat Abdinov3  +2915 moreInstitutions (213)
TL;DR: In this paper, the results of a search for gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton-proton collision data at a centre-of-mass energy of 13 TeV are presented.
Abstract: The results of a search for gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton--proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV are presented. The dataset used was recorded in 2015 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Six signal selections are defined that best exploit the signal characteristics. The data agree with the Standard Model background expectation in all six signal selections, and the largest deviation is a 2.1 standard deviation excess. The results are interpreted in a simplified model where pair-produced gluinos decay via the lightest chargino to the lightest neutralino. In this model, gluinos are excluded up to masses of approximately 1.6 TeV depending on the mass spectrum of the simplified model, thus surpassing the limits of previous searches.

71 citations


Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Ovsat Abdinov3  +2977 moreInstitutions (213)
TL;DR: In this article, high-mass resonances in the dijet invariant mass spectrum with one or two jets identified as $b$-jets are performed using an integrated luminosity of $3.2$ fb$^{-1}$ of proton--proton collisions with a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded by the ATLAS detector at the Large Hadron Collider.

01 Jan 2016
TL;DR: In this paper, the crystal structures of mammalian ras p21 and bacterial elongation factor Tu have been determined by optimal superposition of these remarkably similar structures, careful multiple sequence alignment, and calculation of residue- residue interactions.
Abstract: GTPase domains are functional and struc- tural units employed as molecular switches in a variety of important cellular functions, such as growth control, protein biosynthesis, and membrane traffic. Amino acid sequences of more than 100 members of different subfamilies are known, but crystal structures of only mammalian ras p21 and bacterial elongation factor Tu have been determined. After optimal superposition of these remarkably similar structures, careful multiple sequence alignment, and calculation of residue- residue interactions, we analyzed the two subfamilies in terms of structural conservation, sequence conservation, and residue contact strength. There are three main results. (i) A structure- based alignment of p21 and elongation factor Tu. (it) The dermition of a common conserved structural core that may be useful as the basis of model building by homology of the three-dimensional structure of any GTPase domain. (iii) Iden- tification of sequence regions, other than the effector loop and the nucleotide binding site, that may be involved in the functional cycle: they are loop L4, known to change confor- mation after GTP hydrolysis; helix a2, especially Arg-73 and Met-67 in ras p21; loops L8 and L10, including ras p21 Arg-123, Lys-147, and Leu-120; and residues located spatially near the N and C termini. These regions are candidate sites for

Journal ArticleDOI
TL;DR: It is found that integrin-α10 promotes tumor cell survival through activation of TRIO-RAC-RICTOR-mTOR signaling, and that inhibitors of RAC and mTOR have antitumor effects in vivo, thus identifying a potential treatment strategy for patients with high-risk myxofibrosarcoma.
Abstract: Myxofibrosarcoma is a common mesenchymal malignancy with complex genomics and heterogeneous clinical outcomes. Through gene-expression profiling of 64 primary high-grade myxofibrosarcomas, we defined an expression signature associated with clinical outcome. The gene most significantly associated with disease-specific death and distant metastasis was ITGA10 (integrin-α10). Functional studies revealed that myxofibrosarcoma cells strongly depended on integrin-α10, whereas normal mesenchymal cells did not. Integrin-α10 transmitted its tumor-specific signal via TRIO and RICTOR, two oncoproteins that are frequently co-overexpressed through gene amplification on chromosome 5p. TRIO and RICTOR activated RAC/PAK and AKT/mTOR to promote sarcoma cell survival. Inhibition of these proteins with EHop-016 (RAC inhibitor) and INK128 (mTOR inhibitor) had anti-tumor effects in tumor-derived cell lines and mouse xenografts, and combining the drugs enhanced the effects. Our results demonstrate the importance of integrin-α10/TRIO/RICTOR signaling for driving myxofibrosarcoma progression and provide the basis for promising targeted treatment strategies for patients with high-risk disease.

Journal ArticleDOI
TL;DR: The rcellminer R package enables flexible programmatic access to CellMiner's unparalleled breadth of NCI-60 data, including gene and protein expression, copy number, whole exome mutations, as well as activity data for ∼21K compounds, with information on their structure, mechanism of action and repeat screens.
Abstract: Purpose: The rcellminer R package provides a wide range of functionality to help R users access and explore molecular profiling and drug response data for the NCI-60. The package enables flexible programmatic access to CellMiner’s unparalleled breadth of NCI-60 data, including gene and protein expression, copy number, whole exome mutations, as well as activity data for ∼21K compounds, with information on their structure, mechanism of action and repeat screens. Functions are available to easily visualize compound structures, activity patterns and molecular feature profiles. Additionally, embedded R Shiny applications allow interactive data exploration. Availability and implementation: rcellminer is compatible with R 3.2 and above on Windows, Mac OS X and Linux. The package, documentation, tutorials and Shiny-based applications are available through Bioconductor (http://www.bioconductor.org/packages/rcellminer); ongoing updates will occur according to the Bioconductor release schedule with new CellMiner data. The package is free and open-source (LGPL 3). Contact: lunaa@cbio.mskcc.org or vinodh.rajapakse@nih.gov

Journal ArticleDOI
TL;DR: Mapping the consensus network interactions to Reactome gene lists confirms the pan-cancer importance of signal transduction pathways, innate and adaptive immune signaling, cell cycle, metabolism, and DNA repair; and also suggests several biological processes that may be specific to a subset of tumor types.
Abstract: Protein expression and post-translational modification levels are tightly regulated in neoplastic cells to maintain cellular processes known as 'cancer hallmarks'. The first Pan-Cancer initiative of The Cancer Genome Atlas (TCGA) Research Network has aggregated protein expression profiles for 3,467 patient samples from 11 tumor types using the antibody based reverse phase protein array (RPPA) technology. The resultant proteomic data can be utilized to computationally infer protein-protein interaction (PPI) networks and to study the commonalities and differences across tumor types. In this study, we compare the performance of 13 established network inference methods in their capacity to retrieve the curated Pathway Commons interactions from RPPA data. We observe that no single method has the best performance in all tumor types, but a group of six methods, including diverse techniques such as correlation, mutual information, and regression, consistently rank highly among the tested methods. We utilize the high performing methods to obtain a consensus network; and identify four robust and densely connected modules that reveal biological processes as well as suggest antibody-related technical biases. Mapping the consensus network interactions to Reactome gene lists confirms the pan-cancer importance of signal transduction pathways, innate and adaptive immune signaling, cell cycle, metabolism, and DNA repair; and also suggests several biological processes that may be specific to a subset of tumor types. Our results illustrate the utility of the RPPA platform as a tool to study proteomic networks in cancer.

Journal ArticleDOI
TL;DR: The PaxtoolsR package enables access to pathway data represented in the BioPAX format and made available through the Pathway Commons webservice for users of the R language to aid in advanced pathway analyses.
Abstract: Purpose: PaxtoolsR package enables access to pathway data represented in the BioPAX format and made available through the Pathway Commons webservice for users of the R language to aid in advanced pathway analyses. Features include the extraction, merging and validation of pathway data represented in the BioPAX format. This package also provides novel pathway datasets and advanced querying features for R users through the Pathway Commons webservice allowing users to query, extract and retrieve data and integrate these data with local BioPAX datasets. Availability and implementation: The PaxtoolsR package is compatible with versions of R 3.1.1 (and higher) on Windows, Mac OS X and Linux using Bioconductor 3.0 and is available through the Bioconductor R package repository along with source code and a tutorial vignette describing common tasks, such as data visualization and gene set enrichment analysis. Source code and documentation are at http://www.bioconductor.org/packages/paxtoolsr. This plugin is free, open-source and licensed under the LGPL-3. Contact: gro.ccksm.oibc@slootxap or gro.ccksm.oibc@aanul

Journal ArticleDOI
TL;DR: The MutationAligner web resource enables discovery and exploration of somatic mutation hotspots identified in protein domains across genes and tumor types and will be an important resource for the cancer research community by providing details for the functional importance of particular mutations.
Abstract: The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects.

Proceedings ArticleDOI
TL;DR: The cBioPortal for cancer genomics software has the potential to facilitate the use of genomic data in clinical decision making, and as the sequencing of tumor samples has entered clinical practice, the features are expanding so that it can be used for precision medicine at cancer centers.
Abstract: The cBioPortal for Cancer Genomics provides intuitive visualization and analysis of complex cancer genomics data. The public site (http://cbioportal.org/) is accessed by more than 1,500 researchers per day, and there are now dozens of local instances of the software that host private data sets at cancer centers around the globe. We have recently released the software under an open source license, making it free to use and modify by anybody. The software and detailed documentation are available at https://github.com/cBioPortal/cbioportal. We are now establishing a multi-institutional software development network, which will coordinate and drive the future development of the software and associated data pipelines. This group will focus on four main areas: 1. New analysis and visualization features, including: a. Improved support for cross-cancer queries and cohort comparisons. b. Enhanced clinical decision support for precision oncology, including an improved patient view with knowledge base integration, patient timelines and improved tools for visualizing tumor evolution. 2. New data pipelines, including support for new genomic data types and streamlined pipelines for TCGA and the International Cancer Genome Consortium (ICGC). 3. Software architecture and performance improvements. 4. Community engagement: Documentation, user support, and training. This coordinated effort will help to further establish the cBioPortal as the software of choice in cancer genomics research, both in academia and the pharmaceutical industry. Furthermore, as the sequencing of tumor samples has entered clinical practice, we are expanding the features of the software so that it can be used for precision medicine at cancer centers. In particular, clean, web-accessible, interactive clinical reports integrating multiple sources of genome variation and clinical annotation over time has potential to improve clinical action beyond current text-based molecular reports. By making complex genomic data easily interpretable and linking it to information about drugs and clinical trials, the cBioPortal software has the potential to facilitate the use of genomic data in clinical decision making. Citation Format: Jianjiong Gao, James Lindsay, Stuart Watt, Istemi Bahceci, Pieter Lukasse, Adam Abeshouse, Hsiao-Wei Chen, Ino de Bruijn, Benjamin Gross, Dong Li, Ritika Kundra, Zachary Heins, Jorge Reis-Filho, Onur Sumer, Yichao Sun, Jiaojiao Wang, Qingguo Wang, Hongxin Zhang, Priti Kumari, M. Furkan Sahin, Sander de Ridder, Fedde Schaeffer, Kees van Bochove, Ugur Dogrusoz, Trevor Pugh, Chris Sander, Ethan Cerami, Nikolaus Schultz. The cBioPortal for cancer genomics and its application in precision oncology. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 5277.

Journal ArticleDOI
TL;DR: The notion of recurrence of mutations from single genes to gene families that share homologous protein domains is extended, which enhances statistical power and sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes.

Journal ArticleDOI
TL;DR: This article represents a first attempt to delineate the challenges of supporting and confirming discoveries arising from the systematic analysis of large-scale data resources in a collaborative work environment and to provide a framework that would begin a community discussion to resolve these challenges.
Abstract: The Cancer Target Discovery and Development (CTD2) Network was established to accelerate the transformation of "Big Data" into novel pharmacological targets, lead compounds, and biomarkers for rapid translation into improved patient outcomes. It rapidly became clear in this collaborative network that a key central issue was to define what constitutes sufficient computational or experimental evidence to support a biologically or clinically relevant finding. This manuscript represents a first attempt to delineate the challenges of supporting and confirming discoveries arising from the systematic analysis of large-scale data resources in a collaborative work environment and to provide a framework that would begin a community discussion to resolve these challenges. The Network implemented a multi-Tier framework designed to substantiate the biological and biomedical relevance as well as the reproducibility of data and insights resulting from its collaborative activities. The same approach can be used by the broad scientific community to drive development of novel therapeutic and biomarker strategies for cancer.

01 Jan 2016
TL;DR: The structural significance of short sequence homologies is investigated by searching proteins of known three-dimensional structure for subsequence identities by finding an identical pentapeptide sequence between two pro- teins, which is not a significant indication of structural similarity or of evolutionary kinship.
Abstract: The search for amino acid sequence homolo- gies can be a powerful tool for predicting protein structure. Discovered sequence homologies are currently used in predict- ing the function of oncogene proteins. To sharpen this tool, we investigated the structural significance of short sequence ho- mologies by searching proteins of known three-dimensional structure for subsequence identities. In 62 proteins with 10,000 residues, we found that the longest isolated homologies between unrelated proteins are five residues long. In 6 (out of 25) cases we saw surprising structural adaptability: the same five residues are part of an a-helix in one protein and part of a ,B-strand in another protein. These examples show quantita- tively that pentapeptide structure within a protein is strongly dependent on sequence context, a fact essentially ignored in most protein structure prediction methods: just considering the local sequence of five residues is not sufficient to predict correctly the local conformation (secondary structure). Coop- erativity of length six or longer must be taken into account. Also, we are warned that in the growing practice of comparing a new protein sequence with a data base of known sequences, finding an identical pentapeptide sequence between two pro- teins is not a significant indication of structural similarity or of evolutionary kinship.