scispace - formally typeset
Search or ask a question
Author

Chris Sander

Bio: Chris Sander is an academic researcher from Harvard University. The author has contributed to research in topics: Large Hadron Collider & Protein structure. The author has an hindex of 178, co-authored 713 publications receiving 233287 citations. Previous affiliations of Chris Sander include Purdue University & University of Leeds.


Papers
More filters
Posted ContentDOI
21 Feb 2018-bioRxiv
TL;DR: Systematic and integrative analysis of the genetic variation, mRNA expression and proteomic data of the NCI-60 cancer cell lines uncovered complementarity between different types of molecular data in the prediction of the response to 240 drugs.
Abstract: We describe the rapid and reproducible acquisition of quantitative proteome maps for the NCI-60 cancer cell lines and their use to reveal cancer biology and drug response determinants. Proteome datasets for the 60 cell lines were acquired in duplicate within 30 working days using pressure cycling technology and SWATH mass spectrometry. We consistently quantified 3,171 proteotypic proteins annotated in the SwissProt database across all cell lines, generating a data matrix with 0.1% missing values, allowing analyses of protein complexes and pathway activities across all the cancer cells. Systematic and integrative analysis of the genetic variation, mRNA expression and proteomic data of the NCI-60 cancer cell lines uncovered complementarity between different types of molecular data in the prediction of the response to 240 drugs. We additionally identified novel proteomic drug response determinants for clinically relevant chemotherapeutic and targeted therapies. We anticipate that this study represents a significant advance toward the translational application of proteotypes, which reveal biological insights that are easily missed in the absence of proteomic data.

5 citations

Journal ArticleDOI
Emek Demir, Michael P. Cary, Suzanne M. Paley, Ken Fukuda, Christian Lemer, Imre Vastrik, Guanming Wu, Peter D'Eustachio, Carl F. Schaefer, Joanne S. Luciano, Frank Schacherer, Irma Martínez-Flores, Zhenjun Hu, Verónica Jiménez-Jacinto, Geeta Joshi-Tope, Kumaran Kandasamy, Alejandra López-Fuentes, Huaiyu Mi, Elgar Pichler, Igor Rodchenkov, Andrea Splendiani, Sasha Tkachev, Jeremy Zucker, Gopal R. Gopinath, Harsha Rajasimha, Ranjani Ramakrishnan, Imran Shah, Mustafa H Syed, Nadia Anwar, Özgün Babur, Michael L. Blinov, Erik Brauner, Dan Corwin, Sylva L. Donaldson, Frank Gibbons, Robert N. Goldberg, Peter Hornbeck, Augustin Luna, Peter Murray-Rust, Eric K. Neumann, Oliver Reubenacker, Matthias Samwald, Martijn P. van Iersel, Sarala M. Wimalaratne, Keith Allen, Burk Braun, Michelle Whirl-Carrillo, Kei-Hoi Cheung, Kam D. Dahlquist, Andrew Finney, Marc Gillespie, Elizabeth M. Glass, Li Gong, Robin Haw, Michael Honig, Olivier Hubaut, David W. Kane, Shiva Krupa, Martina Kutmon, Julie Leonard, Debbie Marks, David Merberg, Victoria Petri, Alexander R. Pico, Dean Ravenscroft, Liya Ren, Nigam H. Shah, Margot Sunshine, Rebecca Tang, Ryan Whaley, Stan Letovksy, Kenneth H. Buetow, Andrey Rzhetsky, Vincent Schächter, Bruno S. Sobral, Ugur Dogrusoz, Shannon K. McWeeney, Mirit I. Aladjem, Ewan Birney, Julio Collado-Vides, Susumu Goto, Michael Hucka, Nicolas Le Novère, Natalia Maltsev, Akhilesh Pandey, Paul Thomas, Edgar Wingender, Peter D. Karp, Chris Sander, Gary D. Bader 

5 citations

Journal ArticleDOI
TL;DR: In this article, a measurement of four-top-quark production using proton-proton collision data at a center-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb−1 is presented.
Abstract: A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb−1 is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain b-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26+17−15 fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24+7−6 fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0 ± 2.4 fb.

5 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Dale Charles Abbott3, A. Abed Abud4  +2923 moreInstitutions (221)
TL;DR: In this article, a search for R-parity-violating supersymmetry in final states characterized by high jet multiplicity, at least one isolated light lepton and either zero or at least three b-tagged jets is presented.
Abstract: A search for R-parity-violating supersymmetry in final states characterized by high jet multiplicity, at least one isolated light lepton and either zero or at least three b-tagged jets is presented. The search uses $${139}\,{\text {fb}^{-1}}$$ of $$\sqrt{s} = {13}\hbox { TeV}$$ proton–proton collision data collected by the ATLAS experiment during Run 2 of the Large Hadron Collider. The results are interpreted in the context of R-parity-violating supersymmetry models that feature gluino production, top-squark production, or electroweakino production. The dominant sources of background are estimated using a data-driven model, based on observables at medium jet multiplicity, to predict the b-tagged jet multiplicity distribution at the higher jet multiplicities used in the search. Machine-learning techniques are used to reach sensitivity to electroweakino production, extending the data-driven background estimation to the shape of the machine-learning discriminant. No significant excess over the Standard Model expectation is observed and exclusion limits at the 95% confidence level are extracted, reaching as high as 2.4 TeV in gluino mass, 1.35 TeV in top-squark mass, and 320 (365) GeV in higgsino (wino) mass.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
TL;DR: The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved and modifications are incorporated into a new program, CLUSTAL W, which is freely available.
Abstract: The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved for the alignment of divergent protein sequences. Firstly, individual weights are assigned to each sequence in a partial alignment in order to down-weight near-duplicate sequences and up-weight the most divergent ones. Secondly, amino acid substitution matrices are varied at different alignment stages according to the divergence of the sequences to be aligned. Thirdly, residue-specific gap penalties and locally reduced gap penalties in hydrophilic regions encourage new gaps in potential loop regions rather than regular secondary structure. Fourthly, positions in early alignments where gaps have been opened receive locally reduced gap penalties to encourage the opening up of new gaps at these positions. These modifications are incorporated into a new program, CLUSTAL W which is freely available.

63,427 citations

Journal ArticleDOI
TL;DR: ClUSTAL X is a new windows interface for the widely-used progressive multiple sequence alignment program CLUSTAL W, providing an integrated system for performing multiple sequence and profile alignments and analysing the results.
Abstract: CLUSTAL X is a new windows interface for the widely-used progressive multiple sequence alignment program CLUSTAL W. The new system is easy to use, providing an integrated system for performing multiple sequence and profile alignments and analysing the results. CLUSTAL X displays the sequence alignment in a window on the screen. A versatile sequence colouring scheme allows the user to highlight conserved features in the alignment. Pull-down menus provide all the options required for traditional multiple sequence and profile alignment. New features include: the ability to cut-and-paste sequences to change the order of the alignment, selection of a subset of the sequences to be realigned, and selection of a sub-range of the alignment to be realigned and inserted back into the original alignment. Alignment quality analysis can be performed and low-scoring segments or exceptional residues can be highlighted. Quality analysis and realignment of selected residue ranges provide the user with a powerful tool to improve and refine difficult alignments and to trap errors in input sequences. CLUSTAL X has been compiled on SUN Solaris, IRIX5.3 on Silicon Graphics, Digital UNIX on DECstations, Microsoft Windows (32 bit) for PCs, Linux ELF for x86 PCs, and Macintosh PowerMac.

38,522 citations

Journal ArticleDOI
TL;DR: MUSCLE is a new computer program for creating multiple alignments of protein sequences that includes fast distance estimation using kmer counting, progressive alignment using a new profile function the authors call the log-expectation score, and refinement using tree-dependent restricted partitioning.
Abstract: We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the logexpectation score, and refinement using treedependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.

37,524 citations

Journal ArticleDOI
TL;DR: The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing.
Abstract: Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.

35,225 citations