scispace - formally typeset
Search or ask a question
Author

Chris Soulsby

Bio: Chris Soulsby is an academic researcher from University of Aberdeen. The author has contributed to research in topics: Surface runoff & Groundwater. The author has an hindex of 75, co-authored 370 publications receiving 15497 citations. Previous affiliations of Chris Soulsby include Technical University of Berlin & National Rivers Authority.


Papers
More filters
Journal ArticleDOI
TL;DR: The time water spends travelling subsurface through a catchment to the stream network (i.e., the catchment water transit time) fundamentally describes the storage, flow pathway heterogeneity and sou...
Abstract: The time water spends travelling subsurface through a catchment to the stream network (i.e. the catchment water transit time) fundamentally describes the storage, flow pathway heterogeneity and sou ...

306 citations

Journal ArticleDOI
TL;DR: In this article, the authors explored the relationship between Gran alkalinity and δ18O features and catchment characteristics with the use of a GIS and showed that the influence of catchment topography and scale appeared to be largely mediated by their influence on soil cover and distribution.

249 citations

Journal ArticleDOI
Abstract: The complex interactions of runoff generation processes underlying the hydrological response of streams remain incompletely understood at the catchment scale. Extensive research has demonstrated the utility of tracers for both inferring flow paths distributions and constraining model parameterizations. While useful, the common use of linearity assumptions, i.e. time-invariance and complete mixing, in these studies provides only partial understanding of actual process dynamics. Here we use long term (< 20 yr) precipitation, flow and tracer (chloride) data of three contrasting upland catchments in the Scottish Highlands to inform integrated conceptual models investigating different mixing assumptions. Using the models as diagnostic tools in a functional comparison, water and tracer fluxes were tracked with the objective of characterizing water age distributions in the three catchments and establishing the wetness-dependent temporal dynamics of these distributions. The results highlight the potential importance of partial mixing which is dependent on the hydrological functioning of a catchment. Further, tracking tracer fluxes showed that the various components of a model can be characterized by fundamentally different water age distributions which may be highly sensitive to catchment wetness, available storage, mixing mechanisms, flow path connectivity and the relative importance of the different hydrological processes involved. Flux tracking also revealed that, although negligible for simulating the runoff response, the omission of processes such as interception evaporation can result in considerably biased water age distributions. Finally, the modeling indicated that water age distributions in the three study catchments do have long, power-law tails, which are generated by the interplay of flow path connectivity, the relative importance of different flow paths as well as by the mixing mechanisms involved. In general this study highlights the potential of customized integrated conceptual models, based on multiple mixing assumptions, to infer system internal transport dynamics and their sensitivity to catchment wetness states.

241 citations

Journal ArticleDOI
TL;DR: It appears that the main cause of high influx is sediment loads mobilized from intensively managed land, and fundamental changes to the management of agricultural land is required if fish habitats are to be improved and degraded streams are allowed to re-naturalize.

241 citations

Journal ArticleDOI
TL;DR: Despite an increasing number of empirical investigations of catchment transit times (TTs), virtually all are based on individual catchments and there are few attempts to synthesize understanding ac... as discussed by the authors.
Abstract: Despite an increasing number of empirical investigations of catchment transit times (TTs), virtually all are based on individual catchments and there are few attempts to synthesize understanding ac ...

216 citations


Cited by
More filters
Journal ArticleDOI

6,278 citations

Journal ArticleDOI
TL;DR: In this paper, different river thermal processes responsible for water temperature variability on both the temporal (e.g. diel, daily, seasonal) and spatial scales, as well as providing information related to different water temperature models currently found in the literature are reviewed.
Abstract: Summary 1. The thermal regime of rivers plays an important role in the overall health of aquatic ecosystems, including water quality issues and the distribution of aquatic species within the river environment. Consequently, for conducting environmental impact assessments as well as for effective fisheries management, it is important to understand the thermal behaviour of rivers and related heat exchange processes. 2. This study reviews the different river thermal processes responsible for water temperature variability on both the temporal (e.g. diel, daily, seasonal) and spatial scales, as well as providing information related to different water temperature models currently found in the literature. 3. Water temperature models are generally classified into three groups: regression, stochastic and deterministic models. Deterministic models employ an energy budget approach to predict river water temperature, whereas regression and stochastic models generally rely on air to water temperature relationships. 4. Water temperature variability can occur naturally or as a result of anthropogenic perturbations, such as thermal pollution, deforestation, flow modification and climate change. Literature information is provided on the thermal regime of rivers in relation to anthropogenic impacts and such information will contribute to the better protection of fish habitat and more efficient fisheries management.

1,430 citations

Journal ArticleDOI
05 Dec 2013-Nature
TL;DR: The sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle are discussed.
Abstract: The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget.

1,091 citations

Book
24 Feb 2011
TL;DR: The Global River Database as mentioned in this paper is a collection of river data from North and Central America, South America, Europe, Africa, Asia, and Oceania with a focus on flooding and erosion.
Abstract: Foreword 1. Introduction 2. Runoff, erosion and delivery to the coastal ocean 3. Temporal variations 4. Human impacts Appendices. Global River Database: Appendix A: North and Central America Appendix B: South America Appendix C: Europe Appendix D: Africa Appendix E: Eurasia Appendix F: Asia Appendix G: Oceania References Index.

1,046 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed long-term trends in the factors that currently impact running waters with the aim of predicting what the main threats to rivers will be in the year 2025, and concluded that the overriding pressure on running water ecosystems up to 2025 will stem from the predicted increase in the human population, with concomitant increases in urban development, industry, agricultural activities and water abstraction, diversion and damming.
Abstract: Running waters are perhaps the most impacted ecosystem on the planet as they have been the focus for human settlement and are heavily exploited for water supplies, irrigation, electricity generation, and waste disposal. Lotic systems also have an intimate contact with their catchments and so land-use alterations affect them directly. Here long-term trends in the factors that currently impact running waters are reviewed with the aim of predicting what the main threats to rivers will be in the year 2025. The main ultimate factors forcing change in running waters (ecosystem destruction, physical habitat and water chemistry alteration, and the direct addition or removal of species) stem from proximate influences from urbanization, industry, land-use change and water-course alterations. Any one river is likely to be subjected to several types of impact, and the management of impacts on lotic systems is complicated by numerous links between different forms of anthropogenic effect. Long-term trends for different impacts vary. Concentrations of chemical pollutants such as toxins and nutrients have increased in rivers in developed countries over the past century, with recent reductions for some pollutants (e.g. metals, organic toxicants, acidification), and continued increases in others (e.g. nutrients); there are no long-term chemical data for developing countries. Dam construction increased rapidly during the twentieth century, peaking in the 1970s, and the number of reservoirs has stabilized since this time, whereas the transfer of exotic species between lotic systems continues to increase. Hence, there have been some success stories in the attempts to reduce the impacts from anthropogenic impacts in developed nations. Improvements in the pH status of running waters should continue with lower sulphurous emissions, although emissions of nitrous oxides are set to continue under current legislation and will continue to contribute to acidification and nutrient loadings. Climate change also will impact running waters through alterations in hydrology and thermal regimes, although precise predictions are problematic; effects are likely to vary between regions and to operate alongside rather than override those from other impacts. Effects from climate change may be more extreme over longer time scales (>50 years). The overriding pressure on running water ecosystems up to 2025 will stem from the predicted increase in the human population, with concomitant increases in urban development, industry, agricultural activities and water abstraction, diversion and damming. Future degradation could be substantial and rapid (c. 10 years) and will be concentrated in those areas of the world where resources for conservation are most limited and knowledge of lotic ecosystems most incomplete; damage will centre on lowland rivers, which are also relatively poorly studied. Changes in management practices and public awareness do appear to be benefiting running water ecosystems in developed countries, and could underpin conservation strategies in developing countries if they were implemented in a relevant way.

974 citations