scispace - formally typeset
Search or ask a question
Author

Christen D. Upper

Other affiliations: Agricultural Research Service
Bio: Christen D. Upper is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Population & Growing season. The author has an hindex of 3, co-authored 3 publications receiving 841 citations. Previous affiliations of Christen D. Upper include Agricultural Research Service.

Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses on the bacterial component of leaf microbial communities, with emphasis on P. syringae—a species that participates in leaf ecosystems as a pathogen, ice nucleus, and epiphyte, to illustrate the attractiveness and somewhat unique opportunities provided by leaf ecosystems for addressing fundamental questions of microbial population dynamics and mechanisms of plant-bacterium interactions.
Abstract: The extremely large number of leaves produced by terrestrial and aquatic plants provide habitats for colonization by a diversity of microorganisms. This review focuses on the bacterial component of leaf microbial communities, with emphasis on Pseudomonas syringae—a species that participates in leaf ecosystems as a pathogen, ice nucleus, and epiphyte. Among the diversity of bacteria that colonize leaves, none has received wider attention than P. syringae, as it gained notoriety for being the first recombinant organism (Ice− P. syringae) to be deliberately introduced into the environment. We focus on P. syringae to illustrate the attractiveness and somewhat unique opportunities provided by leaf ecosystems for addressing fundamental questions of microbial population dynamics and mechanisms of plant-bacterium interactions. Leaf ecosystems are dynamic and ephemeral. The physical environment surrounding phyllosphere microbes changes continuously with daily cycles in temperature, radiation, relative humidity, wind velocity, and leaf wetness. Slightly longer-term changes occur as weather systems pass. Seasonal climatic changes impose still a longer cycle. The physical and physiological characteristics of leaves change as they expand, mature, and senesce and as host phenology changes. Many of these factors influence the development of populations of P. syringae upon populations of leaves. P. syringae was first studied for its ability to cause disease on plants. However, disease causation is but one aspect of its life strategy. The bacterium can be found in association with healthy leaves, growing and surviving for many generations on the surfaces of leaves as an epiphyte. A number of genes and traits have been identified that contribute to the fitness of P. syringae in the phyllosphere. While still in their infancy, such research efforts demonstrate that the P. syringae-leaf ecosystem is a particularly attractive system with which to bridge the gap between what is known about the molecular biology of genes linked to pathogenicity and the ecology and epidemiology of associated diseases as they occur in natural settings, the field.

877 citations

Journal ArticleDOI
TL;DR: It is apparent that the species pool comprised genotypes that were more fit than R10 under the conditions that prevailed during the latter part of the growing season, which suggests that large numbers of R10 early in thegrowing season did not exclude the colonization of bean leaflets by its conspecifics.
Abstract: A rifampin-resistant strain of Pseudomonas syringae (R10) was introduced onto bean plants grown in field plots to examine the processes of growth, spread, and survival of a single genotype relative to the dynamics of its conspecifics on populations of individual leaflets. R10 was applied to four plots (400, 200, 100, and 50 m2), each of which was centered in a quadrant of a bean field (90 by 90 m). Population sizes of the species P. syringae and of R10 were determined on each of 25 individual leaflets collected from the largest plot (A) at approximately weekly intervals during a 10-week period following application. The spread of R10 from all plots was monitored by leaf imprinting of individual leaflets collected at sites along four transects, each of which bisected two of the plots. The introduced strain was a dominant component of the species for about 5 weeks postinoculation on leaflets from plot A. Although the population sizes of R10 remained at about 5.0 to 5.5 log10 CFU per leaflet, the strain became a progressively minor component of the species as the population sizes of its conspecifics continued to increase during the latter part of the growing season. In general, a positive correlation was found for the population sizes of R10 and its conspecifics on individual leaflets collected throughout the growing season. This result suggests that large numbers of R10 early in the growing season did not exclude the colonization of bean leaflets by its conspecifics. It is apparent that the species pool comprised genotypes that were more fit than R10 under the conditions that prevailed during the latter part of the growing season. By 6 weeks postinoculation, R10 was detected at all sites sampled within the unsprayed areas of the field. However, it was present as a minor component of the species. The persistence of R10 throughout the winter and into the following growing season was monitored in plot A, which was plowed and replanted with wheat in the fall. R10 was detected on some of the samples (wheat seedlings or soil) taken at approximately monthly intervals from November to June of the following year. In June, the field was plowed and replanted with beans. We could not detect R10 on emerging bean seedlings in plot A. The results demonstrate that the successful spread and persistence of an introduced bacterium do not necessarily lead to the establishment of large populations of the bacterium in adjacent untreated areas or on its host plant in subsequent growing seasons.

28 citations

Book ChapterDOI
01 Jan 1996
TL;DR: Greenhouse and growth chamber have served the plant sciences well and the eminent success of such an approach for many aspects of plant-microbe interactions is well documented.
Abstract: Greenhouse and growth chamber have served the plant sciences well. Use of a controlled environment facilitates experimental manipulation, diminishes environmental variability and provides the means to separate variables and test hypotheses. Such fundamental studies as those that led to the discovery and/or elucidation of mechanisms of phenomena such as photoperiodism, phototropism, photosynthesis, phytohormones and many others were greatly facilitated by use of controlled environmental facilities. The eminent success of such an approach for many aspects of plant-microbe interactions is well documented. For example, screening for resistance to a number of diseases has been successfully conducted in controlled environments for decades.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The plant microbiota emerges as a fundamental trait that includes mutualism enabled through diverse biochemical mechanisms, as revealed by studies on plant growth- Promoting and plant health-promoting bacteria.
Abstract: Plants host distinct bacterial communities on and inside various plant organs, of which those associated with roots and the leaf surface are best characterized. The phylogenetic composition of these communities is defined by relatively few bacterial phyla, including Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. A synthesis of available data suggests a two-step selection process by which the bacterial microbiota of roots is differentiated from the surrounding soil biome. Rhizodeposition appears to fuel an initial substrate-driven community shift in the rhizosphere, which converges with host genotype–dependent finetuning of microbiota profiles in the selection of root endophyte assemblages. Substrate-driven selection also underlies the establishment of phyllosphere communities but takes place solely at the immediate leaf surface. Both the leaf and root microbiota contain bacteria that provide indirect pathogen protection, but root microbiota members appear to serve additional host functions through the acquisition of nutrients from soil for plant growth. Thus, the plant microbiota emerges as a fundamental trait that includes mutualism enabled through diverse biochemical mechanisms, as revealed by studies on plant growth–promoting and plant health–promoting bacteria.

2,169 citations

Journal ArticleDOI
TL;DR: The above-ground parts of plants are normally colonized by a variety of bacteria, yeasts, and fungi, which can be isolated from within plant tissues, but many more are recovered from the surfaces of healthy plants.
Abstract: The above-ground parts of plants are normally colonized by a variety of bacteria, yeasts, and fungi. While a few microbial species can be isolated from within plant tissues, many more are recovered from the surfaces of healthy plants. The aerial habitat colonized by these microbes is termed the

1,874 citations

Journal ArticleDOI
08 Sep 2006-Cell
TL;DR: Examination of stomatal guard cells of Arabidopsis provides evidence that supports a model in which stomata, as part of an integral innate immune system, act as a barrier against bacterial infection.

1,677 citations

Journal ArticleDOI
Julia A. Vorholt1
TL;DR: Insights into the underlying structural principles of indigenous microbial phyllosphere populations will help to develop a deeper understanding of the phyllospheric microbiota and will have applications in the promotion of plant growth and plant protection.
Abstract: Our knowledge of the microbiology of the phyllosphere, or the aerial parts of plants, has historically lagged behind our knowledge of the microbiology of the rhizosphere, or the below-ground habitat of plants, particularly with respect to fundamental questions such as which microorganisms are present and what they do there. In recent years, however, this has begun to change. Cultivation-independent studies have revealed that a few bacterial phyla predominate in the phyllosphere of different plants and that plant factors are involved in shaping these phyllosphere communities, which feature specific adaptations and exhibit multipartite relationships both with host plants and among community members. Insights into the underlying structural principles of indigenous microbial phyllosphere populations will help us to develop a deeper understanding of the phyllosphere microbiota and will have applications in the promotion of plant growth and plant protection.

1,450 citations

Journal ArticleDOI
TL;DR: This review focuses on the bacterial component of leaf microbial communities, with emphasis on P. syringae—a species that participates in leaf ecosystems as a pathogen, ice nucleus, and epiphyte, to illustrate the attractiveness and somewhat unique opportunities provided by leaf ecosystems for addressing fundamental questions of microbial population dynamics and mechanisms of plant-bacterium interactions.
Abstract: The extremely large number of leaves produced by terrestrial and aquatic plants provide habitats for colonization by a diversity of microorganisms. This review focuses on the bacterial component of leaf microbial communities, with emphasis on Pseudomonas syringae—a species that participates in leaf ecosystems as a pathogen, ice nucleus, and epiphyte. Among the diversity of bacteria that colonize leaves, none has received wider attention than P. syringae, as it gained notoriety for being the first recombinant organism (Ice− P. syringae) to be deliberately introduced into the environment. We focus on P. syringae to illustrate the attractiveness and somewhat unique opportunities provided by leaf ecosystems for addressing fundamental questions of microbial population dynamics and mechanisms of plant-bacterium interactions. Leaf ecosystems are dynamic and ephemeral. The physical environment surrounding phyllosphere microbes changes continuously with daily cycles in temperature, radiation, relative humidity, wind velocity, and leaf wetness. Slightly longer-term changes occur as weather systems pass. Seasonal climatic changes impose still a longer cycle. The physical and physiological characteristics of leaves change as they expand, mature, and senesce and as host phenology changes. Many of these factors influence the development of populations of P. syringae upon populations of leaves. P. syringae was first studied for its ability to cause disease on plants. However, disease causation is but one aspect of its life strategy. The bacterium can be found in association with healthy leaves, growing and surviving for many generations on the surfaces of leaves as an epiphyte. A number of genes and traits have been identified that contribute to the fitness of P. syringae in the phyllosphere. While still in their infancy, such research efforts demonstrate that the P. syringae-leaf ecosystem is a particularly attractive system with which to bridge the gap between what is known about the molecular biology of genes linked to pathogenicity and the ecology and epidemiology of associated diseases as they occur in natural settings, the field.

877 citations