scispace - formally typeset
Search or ask a question
Author

Christiaan B. Brink

Bio: Christiaan B. Brink is an academic researcher from North-West University. The author has contributed to research in topics: Cholinergic & Muscarinic acetylcholine receptor. The author has an hindex of 16, co-authored 27 publications receiving 672 citations. Previous affiliations of Christiaan B. Brink include Potchefstroom University for Christian Higher Education.

Papers
More filters
Journal ArticleDOI
TL;DR: MB and MG present with structure-specific antidepressant-like effects following acute and sub-chronic treatment, possibly involving NOS and MAO-A inhibition and cortico-limbic 5HT and l-NE release.

71 citations

Journal ArticleDOI
TL;DR: The results suggest that the antidepressant-like activity of PDE5 inhibitors involve alterations in monoaminergic neurotransmission, but involve a dependence on inherent cholinergic tone so that the final response is determined by the relative extent of activation of these systems.
Abstract: We explored the antidepressant-like properties of two phosphodiesterase type 5 (PDE5) inhibitors in a genetic animal model of depression, namely Flinders sensitive line rats. We investigated the dose-dependency of the antidepressant-like action of sildenafil, and its interaction with the cholinergic system and behavioural correlates of monoaminergic neurotransmission, in the forced swim test. Antidepressant-like properties of tadalafil (a structurally distinct PDE5 inhibitor) were also evaluated. Flinders sensitive line rats were treated for 14 days with vehicle, fluoxetine, atropine or PDE5 inhibitors+/-atropine. Immobility, swimming and climbing behaviours were assessed in the forced swim test. In combination with atropine (1 mg/kg), both sildenafil (10, 20 mg/kg) and tadalafil (10 mg/kg) decreased immobility while increasing swimming (serotonergic) and climbing (noradrenergic) behaviours. Interestingly, sildenafil (3 mg/kg) decreased immobility while selectively increasing climbing behaviour in the absence of atropine. These results suggest that the antidepressant-like activity of PDE5 inhibitors involve alterations in monoaminergic neurotransmission, but involve a dependence on inherent cholinergic tone so that the final response is determined by the relative extent of activation of these systems. Furthermore, the behavioural profile of sildenafil alone, and its observed antidepressant-like properties, shows strict dose-dependency, with only higher doses showing an interaction with the cholinergic system.

69 citations

Journal ArticleDOI
TL;DR: In reliable animal models of depression tianeptine has been shown to prevent neurodegeneration and decreases in hippocampal volume in response to chronic stress, and provides further support for the hypothesis that depression may involve dysregulation of pathways controlling cellular resilience and that treatment should be directed towards the reversal thereof.
Abstract: Tianeptine, an atypical antidepressant patented and developed by Servier, enhances the synaptic reuptake of serotonin, without affecting norepinephrine and dopamine uptake, while it lacks affinity for neurotransmitter receptors. This mechanism for an antidepressant is apparently paradoxical, since the currently employed antidepressants enhance serotonin by inhibiting its breakdown or by inhibiting monoaminergic reuptake. Although tianeptine has been shown to reduce central 5HT availability and to indirecty modulate central adrenergic and dopaminergic systems and to indirectly inhibit cholinergic hyperactivity, its antidepressant action is believed to be more directly related to central neuronal remodeling and restoration of neuronal plasticity. In reliable animal models of depression tianeptine has been shown to prevent neurodegeneration and decreases in hippocampal volume in response to chronic stress. These effects on neuroplasticity are suspected to involve the normalization of the hypothalamic-pituitary-adrenal axis and modulatory effects on excitatory amino acids and N-methyl-D-aspartate receptors. Together with a body of related studies, these data provide further support for the hypothesis that depression may involve dysregulation of pathways controlling cellular resilience and that treatment should be directed towards the reversal thereof. Importantly, tianeptine is not anxiogenic and has also been shown to be effective in treatment-resistant depression, which may lead the way to a major breakthrough in the treatment of depression.

67 citations

Journal ArticleDOI
TL;DR: It is reported that sildenafil increases muscarinic acetylcholine receptor (mAChR) signaling in human neuroblastoma cells, providing evidence for cholinergic-nitrergic interactions in the neurobiology of depression.
Abstract: The phosphodiesterase (PDE) 5 inhibitor sildenafil has been shown to display psychotropic actions in humans and animals, and has been used for the treatment of antidepressant-associated erectile dysfunction. However, its effects on the neurobiology of depression are unknown. Nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) inhibition is anti-depressant in animals, and increasing cGMP with sildenafil is anxiogenic in rodents. Substantial cholinergic-nitrergic interaction exists in the brain, while sildenafil shows modulatory actions on cholinergic transmission. Depression is also associated with increased cholinergic drive. Here we report that sildenafil increases muscarinic acetylcholine receptor (mAChR) signaling in human neuroblastoma cells. We also show that fluoxetine (20 mg/kg/day × 7 days), as well as a combination of sildenafil (10 mg/kg/day × 7 days) plus the antimuscarinic atropine (1 mg/kg/day × 7 days) demonstrates significant, comparable antidepressant-like effects in the rat forced swim test (FST) and also reduces cortical β-adrenergic receptor (β-AR) density, while sildenafil or atropine alone did not. Importantly, sildenafil did not modify fluoxetine’s response. Sildenafil thus demonstrates antidepressant-like effects but only after central muscarinic receptor blockade, providing evidence for cholinergic-nitrergic interactions in the neurobiology of depression.

65 citations

Journal ArticleDOI
TL;DR: The understanding of molecular receptor and signal transduction pharmacology enables clinicians to improve their effective implementation of current and future pharmacotherapy, ultimately enhancing the quality of life of their patients.
Abstract: Problem statement During especially the past two decades many discoveries in biological sciences, and in particular at the molecular and genetic level, have greatly impacted on our knowledge and understanding of drug action and have helped to develop new drugs and therapeutic strategies. Furthermore, many exciting new drugs acting via novel pharmacological mechanisms are expected to be in clinical use in the not too distant future.

65 citations


Cited by
More filters
Journal ArticleDOI
29 Nov 2007-Nature
TL;DR: These compounds bind to the SIRT1 enzyme–peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates and improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver.
Abstract: Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.

1,614 citations

01 Jan 2013
TL;DR: In this paper, the authors present answers to 24 questions relevant to reviewing European policies on air pollution and to addressing health aspects of these policies, which were developed by a large group of scientists engaged in the WHO project REVIHAAP.
Abstract: This document presents answers to 24 questions relevant to reviewing European policies on air pollution and to addressing health aspects of these policies. The answers were developed by a large group of scientists engaged in the WHO project “Review of evidence on health aspects of air pollution – REVIHAAP”. The experts reviewed and discussed the newly accumulated scientific evidence on the adverse effects on health of air pollution, formulating science-based answers to the 24 questions. Extensive rationales for the answers, including the list of key references, are provided. The review concludes that a considerable amount of new scientific information on the adverse effects on health of particulate matter, ozone and nitrogen dioxide, observed at levels commonly present in Europe, has been published in recent years. This new evidence supports the scientific conclusions of the WHO air quality guidelines, last updated in 2005, and indicates that the effects in some cases occur at air pollution concentrations lower than those serving to establish these guidelines. It also provides scientific arguments for taking decisive actions to improve air quality and reduce the burden of disease associated with air pollution in Europe. This publication arises from the project REVIHAAP and has been co-funded by the European Union.

744 citations

Journal Article

669 citations

Journal ArticleDOI
TL;DR: G-protein-coupled receptor kinases and β-arrestins are involved in an increasing number of interactions with non-receptor proteins, broadening the variety of their cellular functions.
Abstract: Stimulation of cell-surface seven-transmembrane receptors (7TMRs) elicits biological responses to a wide range of extracellular signals, including many hormones. Classically, heterotrimeric GTP-binding proteins (G proteins) are recruited to the activated conformation of 7TMRs. Only two other families of protein have this remarkable characteristic: G-protein-coupled receptor kinases and beta-arrestins. These two protein families have long been known to have a central and coordinated role in the "desensitization" of G protein activation by 7TMRs. In addition, G-protein-coupled receptor kinases and beta-arrestins are involved in an increasing number of interactions with non-receptor proteins, broadening the variety of their cellular functions. These newly appreciated attributes of these two families of protein highlight their unique ability to coordinate the various aspects of 7TMR functions.

607 citations

Journal ArticleDOI
TL;DR: Recent reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors.
Abstract: The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.

561 citations