scispace - formally typeset
Search or ask a question
Author

Christian Bick

Other affiliations: University of Oxford, Rice University, VU University Amsterdam  ...read more
Bio: Christian Bick is an academic researcher from University of Exeter. The author has contributed to research in topics: Population & Physics. The author has an hindex of 18, co-authored 67 publications receiving 1069 citations. Previous affiliations of Christian Bick include University of Oxford & Rice University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Ott-Antonsen and Watanabe-Strogatz reduction method is used to analyze the collective dynamics of a biological oscillator network and to find factors that lead to malfunctioning.
Abstract: Many biological and neural systems can be seen as networks of interacting periodic processes. Importantly, their functionality, i.e., whether these networks can perform their function or not, depends on the emerging collective dynamics of the network. Synchrony of oscillations is one of the most prominent examples of such collective behavior and has been associated both with function and dysfunction. Understanding how network structure and interactions, as well as the microscopic properties of individual units, shape the emerging collective dynamics is critical to find factors that lead to malfunction. However, many biological systems such as the brain consist of a large number of dynamical units. Hence, their analysis has either relied on simplified heuristic models on a coarse scale, or the analysis comes at a huge computational cost. Here we review recently introduced approaches, known as the Ott–Antonsen and Watanabe–Strogatz reductions, allowing one to simplify the analysis by bridging small and large scales. Thus, reduced model equations are obtained that exactly describe the collective dynamics for each subpopulation in the oscillator network via few collective variables only. The resulting equations are next-generation models: Rather than being heuristic, they exactly link microscopic and macroscopic descriptions and therefore accurately capture microscopic properties of the underlying system. At the same time, they are sufficiently simple to analyze without great computational effort. In the last decade, these reduction methods have become instrumental in understanding how network structure and interactions shape the collective dynamics and the emergence of synchrony. We review this progress based on concrete examples and outline possible limitations. Finally, we discuss how linking the reduced models with experimental data can guide the way towards the development of new treatment approaches, for example, for neurological disease.

123 citations

Journal ArticleDOI
TL;DR: It is argued that brain activity is better understood considering information flows in the phase space of the corresponding dynamical model, and how recent knowledge inspires new theoretical formalisms that can be tested with modern experimental techniques are shown.

110 citations

Journal ArticleDOI
TL;DR: In this paper, the authors apply the idea of control to chimera states: using gradient dynamics to exploit drift of a chimera, it will attain any desired target position, which can be generalized to arbitrary dimensions.
Abstract: Coupled phase oscillators model a variety of dynamical phenomena in nature and technological applications. Non-local coupling gives rise to chimera states which are characterized by a distinct part of phase-synchronized oscillators while the remaining ones move incoherently. Here, we apply the idea of control to chimera states: using gradient dynamics to exploit drift of a chimera, it will attain any desired target position. Through control, chimera states become functionally relevant; for example, the controlled position of localized synchrony may encode information and perform computations. Since functional aspects are crucial in (neuro-)biology and technology, the localized synchronization of a chimera state becomes accessible to develop novel applications. Based on gradient dynamics, our control strategy applies to any suitable observable and can be generalized to arbitrary dimensions. Thus, the applicability of chimera control goes beyond chimera states in non-locally coupled systems.

98 citations

Journal ArticleDOI
22 Jul 2016-Chaos
TL;DR: In this article, it was shown that nonpairwise coupling, including three and four-way interactions of the oscillator phases, can give rise to complex emergent dynamics in symmetric phase oscillator networks.
Abstract: The Kuramoto–Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling—including three and four-way interactions of the oscillator phases—that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.

83 citations

Journal ArticleDOI
TL;DR: It is shown that even symmetric systems of identical oscillators may not only exhibit chaotic dynamics, but also chaotically fluctuating order parameters, implying that neither inhomogeneities nor amplitude variations are necessary to obtain chaos.
Abstract: Phase-coupled oscillators serve as paradigmatic models of networks of weakly interacting oscillatory units in physics and biology. The order parameter which quantifies synchronization so far has been found to be chaotic only in systems with inhomogeneities. Here we show that even symmetric systems of identical oscillators may not only exhibit chaotic dynamics, but also chaotically fluctuating order parameters. Our findings imply that neither inhomogeneities nor amplitude variations are necessary to obtain chaos; i.e., nonlinear interactions of phases give rise to the necessary instabilities.

77 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations