scispace - formally typeset
Search or ask a question
Author

Christian C. Figueroa

Bio: Christian C. Figueroa is an academic researcher from University of Talca. The author has contributed to research in topics: Aphid & Myzus persicae. The author has an hindex of 24, co-authored 68 publications receiving 1581 citations. Previous affiliations of Christian C. Figueroa include University of Chile & Austral University of Chile.


Papers
More filters
Journal ArticleDOI
07 Jun 2012-PLOS ONE
TL;DR: This study suggests strongly that insecticide resistance in M. persicae is more complex that has been described, with the participation of a broad array of resistance mechanisms.
Abstract: Background: Insecticide resistance is one of the best examples of rapid micro-evolution found in nature. Since the development of the first synthetic insecticide in 1939, humans have invested considerable effort to stay ahead of resistance phenotypes that repeatedly develop in insects. Aphids are a group of insects that have become global pests in agriculture and frequently exhibit insecticide resistance. The green peach aphid, Myzus persicae, has developed resistance to at least seventy different synthetic compounds, and different insecticide resistance mechanisms have been reported worldwide. Methodology/Principal Findings: To further characterize this resistance, we analyzed genome-wide transcriptional responses in three genotypes of M. persicae, each exhibiting different resistance mechanisms, in response to an anticholinesterase insecticide. The sensitive genotype (exhibiting no resistance mechanism) responded to the insecticide by upregulating 183 genes primarily ones related to energy metabolism, detoxifying enzymes, proteins of extracellular transport, peptidases and cuticular proteins. The second genotype (resistant through a kdr sodium channel mutation), up-regulated 17 genes coding for detoxifying enzymes, peptidase and cuticular proteins. Finally, a multiply resistant genotype (carrying kdr and a modified acetylcholinesterase), up-regulated only 7 genes, appears not to require induced insecticide detoxification, and instead down-regulated many genes. Conclusions/Significance: This study suggests strongly that insecticide resistance in M. persicae is more complex that has been described, with the participation of a broad array of resistance mechanisms. The sensitive genotype exhibited the highest transcriptional plasticity, accounting for the wide range of potential adaptations to insecticides that this species can evolve. In contrast, the multiply resistant genotype exhibited a low transcriptional plasticity, even for the expression of genes encoding enzymes involved in insecticide detoxification. Our results emphasize the value of microarray studies to search for regulated genes in insects, but also highlights the many ways those different genotypes can assemble resistant phenotypes depending on the environmental pressure.

172 citations

Journal ArticleDOI
TL;DR: The results show cross-species application of known microsatellite loci is a highly promising source of codominant markers for population genetic and evolutionary studies in aphids.
Abstract: Despite the relative ease of isolating microsatellites, their development still requires substantial inputs of time, money and expertise For this reason there is considerable interest in using existing microsatellites on species from which markers were not cloned We tested cross-species amplification of 48 existing aphid loci in species of the following genera: Aphidinae: Aphidini: Aphis and Rhopalosiphum ; Aphidinae: Macrosiphini: Acyrthosiphum , Brevicoryne , Diuraphis , Illinoia , Macrosiphoniella , Macrosiphum , Metopeurum , Metapolophium , Myzus , Phorodon , Sitobion and Uroleucon and Neuquenaphidinae: Neuquenaphis Our results show cross-species application of known microsatellite loci is a highly promising source of codominant markers for population genetic and evolutionary studies in aphids

135 citations

Journal ArticleDOI
TL;DR: This study illustrates that multiple introductions of highly specialized clones, rather than local evolution in resource use and/or selection of generalist genotypes, can explain the demographic success of a strictly asexual invader.
Abstract: Asexuality confers demographic advantages to invasive taxa, but generally limits adaptive potential for colonizing of new habitats. Therefore, pre-existing adaptations and habitat tolerance are essential in the success of asexual invaders. We investigated these key factors of invasiveness by assessing reproductive modes and host-plant adaptations in the pea aphid, Acyrthosiphon pisum, a pest recently introduced into Chile. The pea aphid encompasses lineages differing in their reproductive mode, ranging from obligatory cyclical parthenogenesis to fully asexual reproduction. This species also shows variation in host use, with distinct biotypes specialized on different species of legumes as well as more polyphagous populations. In central Chile, microsatellite genotyping of pea aphids sampled on five crops and wild legumes revealed three main clonal genotypes, which showed striking associations with particular host plants rather than sampling locations. Phenotypic analyses confirmed their strong host specialization and demonstrated parthenogenesis as their sole reproductive mode. The genetic relatedness of these clonal genotypes with corresponding host-specialized populations from the Old World indicated that each clone descended from a particular Eurasian biotype, which involved at least three successful introduction events followed by spread on different crops. This study illustrates that multiple introductions of highly specialized clones, rather than local evolution in resource use and/or selection of generalist genotypes, can explain the demographic success of a strictly asexual invader.

82 citations

Journal ArticleDOI
01 Jul 2005-Heredity
TL;DR: Comparisons of the genotypes found in Chile with those described in earlier surveys in Western Europe led us to identify ‘superclones’ with large geographical distribution and high ecological success, and to make a preliminary exploration of the putative origin(s) of S. avenae individuals introduced to Chile.
Abstract: In Chile, the aphid Sitobion avenae is of recent introduction, lives on cultivated and wild Poaceae, and is thought to reproduce by permanent parthenogenesis. In order to study the genetic variability and population structure of this species, five microsatellite loci were typed from individual aphids collected from different cultivated and wild host plants, from different geographical zones, and years. Chilean populations showed a high degree of heterozygosity and a low genetic variability across regions and years, with four predominant genotypes representing nearly 90% of the sample. This pattern of low clonal diversity and high heterozygosity was interpreted as the result of recent founder events from a few asexually reproducing genotypes. Most geographical and temporal variation observed in the genetic composition resulted from fluctuations of a few predominant clones. In addition, comparisons of the genotypes found in Chile with those described in earlier surveys of S. avenae populations in Western Europe led us to identify ‘superclones’ with large geographical distribution and high ecological success, and to make a preliminary exploration of the putative origin(s) of S. avenae individuals introduced to Chile.

73 citations

Journal ArticleDOI
TL;DR: It is argued that the evolution of endothermy could now be elucidated based on a joint, and perhaps unprecedented, effort of researchers from the fields of genomics, physiology and evolution.
Abstract: During the past 30 years, the evolution of endothermy has been a topic of keen interest to palaeontologists and evolutionary physiologists. While palaeontologists have found abundant Permian and Triassic fossils, suggesting important clues regarding the timing of origin of endothermy, physiologists have proposed several plausible hypotheses of how the metabolic elevation leading to endothermy could have occurred. More recently, molecular biologists have developed powerful tools to infer past adaptive processes, and gene expression mechanisms that describe the organization of genomes into phenotypes. Here, we argue that the evolution of endothermy could now be elucidated based on a joint, and perhaps unprecedented, effort of researchers from the fields of genomics, physiology and evolution.

68 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal Article
TL;DR: FastTree as mentioned in this paper uses sequence profiles of internal nodes in the tree to implement neighbor-joining and uses heuristics to quickly identify candidate joins, then uses nearest-neighbor interchanges to reduce the length of the tree.
Abstract: Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

2,436 citations

10 Dec 2007
TL;DR: The experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.
Abstract: EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

1,528 citations