scispace - formally typeset
Search or ask a question
Author

Christian C. Voigt

Bio: Christian C. Voigt is an academic researcher from Leibniz Association. The author has contributed to research in topics: Foraging & Population. The author has an hindex of 47, co-authored 248 publications receiving 8365 citations. Previous affiliations of Christian C. Voigt include Free University of Berlin & Latvia University of Agriculture.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a transdisciplinary understanding of the significance of the night, and its loss, for humans and the natural systems upon which we depend, is presented, with a strong focus on energy efficiency and greenhouse gas emissions.
Abstract: Although the invention and widespread use of artificial light is clearly one of the most important human technological advances, the transformation of nightscapes is increasingly recognized as having adverse effects. Night lighting may have serious physiological consequences for humans, ecological and evolutionary implications for animal and plant populations, and may reshape entire ecosystems. However, knowledge on the adverse effects of light pollution is vague. In response to climate change and energy shortages, many countries, regions, and communities are developing new lighting programs and concepts with a strong focus on energy efficiency and greenhouse gas emissions. Given the dramatic increase in artificial light at night (0 - 20% per year, depending on geographic region), we see an urgent need for light pollution policies that go beyond energy efficiency to include human well-being, the structure and functioning of ecosystems, and inter-related socioeconomic consequences. Such a policy shift will require a sound transdisciplinary understanding of the significance of the night, and its loss, for humans and the natural systems upon which we depend. Knowledge is also urgently needed on suitable lighting technologies and concepts which are ecologically, socially, and economically sustainable. Unless managing darkness becomes an integral part of future conservation and lighting policies, modern society may run into a global self-experiment with unpredictable outcomes.

486 citations

Journal ArticleDOI
19 Jan 2010-PLOS ONE
TL;DR: Yasuní has outstanding global conservation significance due to its extraordinary biodiversity and potential to sustain this biodiversity in the long term because of its large size and wilderness character, and likelihood of maintaining wet, rainforest conditions while anticipated climate change-induced drought intensifies in the eastern Amazon.
Abstract: The Blue Moon Fund, the Conservation; Food & Health Foundation; the Forrest and Frances Lattner Foundation; The US National Science Foundation (Graduate Research Fellowship Program); Texas State University-Department of Biology; TADPOLE; The US National Science Foundation; the L.S.B. Leakey Foundation; the Wenner-Gren Foundation for Anthropological Research; Primate Conservation, Inc.; US National Science Foundation (DBI-0434875)

364 citations

Journal ArticleDOI
TL;DR: Results show that a novel stenodermatine skull phenotype played a central role in the evolution of frugivory and increasing speciation within phyllostomids, with a significant increase in diversification rate driven by increased speciation at the most recent common ancestor.
Abstract: How ecological opportunity relates to diversification is a central question in evolutionary biology. However, there are few empirical examples of how ecological opportunity and morphological innovation open new adaptive zones, and promote diversification. We analyse data on diet, skull morphology and bite performance, and relate these traits to diversification rates throughout the evolutionary history of an ecologically diverse family of mammals (Chiroptera: Phyllostomidae). We found a significant increase in diversification rate driven by increased speciation at the most recent common ancestor of the predominantly frugivorous subfamily Stenodermatinae. The evolution of diet was associated with skull morphology, and morphology was tightly coupled with biting performance, linking phenotype to new niches through performance. Following the increase in speciation rate, the rate of morphological evolution slowed, while the rate of evolution in diet increased. This pattern suggests that morphology stabilized, and niches within the new adaptive zone of frugivory were filled rapidly, after the evolution of a new cranial phenotype that resulted in a certain level of mechanical efficiency. The tree-wide speciation rate increased non linearly with a more frugivorous diet, and was highest at measures of skull morphology associated with morphological extremes, including the most derived Stenodermatines. These results show that a novel stenodermatine skull phenotype played a central role in the evolution of frugivory and increasing speciation within phyllostomids.

232 citations


Cited by
More filters
01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI

3,734 citations

30 Apr 1984
TL;DR: A review of the literature on optimal foraging can be found in this article, with a focus on the theoretical developments and the data that permit tests of the predictions, and the authors conclude that the simple models so far formulated are supported by available data and that they are optimistic about the value both now and in the future.
Abstract: Beginning with Emlen (1966) and MacArthur and Pianka (1966) and extending through the last ten years, several authors have sought to predict the foraging behavior of animals by means of mathematical models. These models are very similar,in that they all assume that the fitness of a foraging animal is a function of the efficiency of foraging measured in terms of some "currency" (Schoener, 1971) -usually energy- and that natural selection has resulted in animals that forage so as to maximize this fitness. As a result of these similarities, the models have become known as "optimal foraging models"; and the theory that embodies them, "optimal foraging theory." The situations to which optimal foraging theory has been applied, with the exception of a few recent studies, can be divided into the following four categories: (1) choice by an animal of which food types to eat (i.e., optimal diet); (2) choice of which patch type to feed in (i.e., optimal patch choice); (3) optimal allocation of time to different patches; and (4) optimal patterns and speed of movements. In this review we discuss each of these categories separately, dealing with both the theoretical developments and the data that permit tests of the predictions. The review is selective in the sense that we emphasize studies that either develop testable predictions or that attempt to test predictions in a precise quantitative manner. We also discuss what we see to be some of the future developments in the area of optimal foraging theory and how this theory can be related to other areas of biology. Our general conclusion is that the simple models so far formulated are supported are supported reasonably well by available data and that we are optimistic about the value both now and in the future of optimal foraging theory. We argue, however, that these simple models will requre much modification, espicially to deal with situations that either cannot easily be put into one or another of the above four categories or entail currencies more complicated that just energy.

2,709 citations

Journal Article
TL;DR: In this paper, a test based on two conserved CHD (chromo-helicase-DNA-binding) genes that are located on the avian sex chromosomes of all birds, with the possible exception of the ratites (ostriches, etc.).

2,554 citations