scispace - formally typeset
Search or ask a question
Author

Christian G. Giske

Bio: Christian G. Giske is an academic researcher from Karolinska University Hospital. The author has contributed to research in topics: Klebsiella pneumoniae & Medicine. The author has an hindex of 50, co-authored 215 publications receiving 23571 citations. Previous affiliations of Christian G. Giske include Public Health Agency of Sweden & Swedish Institute.


Papers
More filters
Journal ArticleDOI
Evelina Tacconelli1, Elena Carrara1, Alessia Savoldi1, Stéphan Juergen Harbarth2, Marc Mendelson3, Dominique L Monnet4, Céline Pulcini, Gunnar Kahlmeter, Jan Kluytmans5, Yehuda Carmeli6, Marc Ouellette7, Kevin Outterson8, Jean B. Patel9, Marco Cavaleri10, Edward Cox11, Christopher R. Houchens12, M Lindsay Grayson13, Paul Hansen14, Nalini Singh15, Ursula Theuretzbacher, Nicola Magrini2, Aaron O. Aboderin, Seif Al-Abri, Nordiah Awang Jalil, Nur Benzonana, Sanjay Bhattacharya, Adrian Brink, Francesco Robert Burkert, Otto Cars, Giuseppe Cornaglia, Oliver J. Dyar, Alexander W. Friedrich, Ana Cristina Gales, Sumanth Gandra, Christian G. Giske, Debra A. Goff, Herman Goossens, Thomas Gottlieb, Manuel Guzman Blanco, Waleria Hryniewicz, Deepthi Kattula, Timothy Jinks, Souha S. Kanj, Lawrence Kerr, Marie-Paule Kieny, Yang Soo Kim, Roman S. Kozlov, Jaime Labarca, Ramanan Laxminarayan, Karin Leder, Leonard Leibovici, Gabriel Levy-Hara, Jasper Littman, Surbhi Malhotra-Kumar, Vikas Manchanda, Lorenzo Moja, Babacar Ndoye, Angelo Pan, David L. Paterson, Mical Paul, Haibo Qiu, Pilar Ramon-Pardo, Jesús Rodríguez-Baño, Maurizio Sanguinetti, Sharmila Sengupta, Mike Sharland, Massinissa Si-Mehand, Lynn L. Silver, Wonkeung Song, Martin Steinbakk, Jens Thomsen, Guy E. Thwaites, Jos W. M. van der Meer, Nguyen Van Kinh, Silvio Vega, Maria Virginia Villegas, Agnes Wechsler-Fördös, Heiman F. L. Wertheim, Evelyn Wesangula, Neil Woodford, Fidan O Yilmaz, Anna Zorzet 
TL;DR: Future development strategies should focus on antibiotics that are active against multidrug-resistant tuberculosis and Gram-negative bacteria, and include antibiotic-resistant bacteria responsible for community-acquired infections.
Abstract: Summary Background The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Due to its large public health and societal implications, multidrug-resistant tuberculosis has been long regarded by WHO as a global priority for investment in new drugs. In 2016, WHO was requested by member states to create a priority list of other antibiotic-resistant bacteria to support research and development of effective drugs. Methods We used a multicriteria decision analysis method to prioritise antibiotic-resistant bacteria; this method involved the identification of relevant criteria to assess priority against which each antibiotic-resistant bacterium was rated. The final priority ranking of the antibiotic-resistant bacteria was established after a preference-based survey was used to obtain expert weighting of criteria. Findings We selected 20 bacterial species with 25 patterns of acquired resistance and ten criteria to assess priority: mortality, health-care burden, community burden, prevalence of resistance, 10-year trend of resistance, transmissibility, preventability in the community setting, preventability in the health-care setting, treatability, and pipeline. We stratified the priority list into three tiers (critical, high, and medium priority), using the 33rd percentile of the bacterium's total scores as the cutoff. Critical-priority bacteria included carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa , and carbapenem-resistant and third-generation cephalosporin-resistant Enterobacteriaceae. The highest ranked Gram-positive bacteria (high priority) were vancomycin-resistant Enterococcus faecium and meticillin-resistant Staphylococcus aureus . Of the bacteria typically responsible for community-acquired infections, clarithromycin-resistant Helicobacter pylori , and fluoroquinolone-resistant Campylobacter spp, Neisseria gonorrhoeae , and Salmonella typhi were included in the high-priority tier. Interpretation Future development strategies should focus on antibiotics that are active against multidrug-resistant tuberculosis and Gram-negative bacteria. The global strategy should include antibiotic-resistant bacteria responsible for community-acquired infections such as Salmonella spp, Campylobacter spp, N gonorrhoeae , and H pylori . Funding World Health Organization.

3,184 citations

Journal ArticleDOI
TL;DR: The prevalence of NDM-1, in multidrug-resistant Enterobacteriaceae in India, Pakistan, and the UK is investigated, and co-ordinated international surveillance is needed.
Abstract: Summary Background Gram-negative Enterobacteriaceae with resistance to carbapenem conferred by New Delhi metallo-β-lactamase 1 (NDM-1) are potentially a major global health problem. We investigated the prevalence of NDM-1, in multidrug-resistant Enterobacteriaceae in India, Pakistan, and the UK. Methods Enterobacteriaceae isolates were studied from two major centres in India—Chennai (south India), Haryana (north India)—and those referred to the UK's national reference laboratory. Antibiotic susceptibilities were assessed, and the presence of the carbapenem resistance gene bla NDM-1 was established by PCR. Isolates were typed by pulsed-field gel electrophoresis of XbaI-restricted genomic DNA. Plasmids were analysed by S1 nuclease digestion and PCR typing. Case data for UK patients were reviewed for evidence of travel and recent admission to hospitals in India or Pakistan. Findings We identified 44 isolates with NDM-1 in Chennai, 26 in Haryana, 37 in the UK, and 73 in other sites in India and Pakistan. NDM-1 was mostly found among Escherichia coli (36) and Klebsiella pneumoniae (111), which were highly resistant to all antibiotics except to tigecycline and colistin. K pneumoniae isolates from Haryana were clonal but NDM-1 producers from the UK and Chennai were clonally diverse. Most isolates carried the NDM-1 gene on plasmids: those from UK and Chennai were readily transferable whereas those from Haryana were not conjugative. Many of the UK NDM-1 positive patients had travelled to India or Pakistan within the past year, or had links with these countries. Interpretation The potential of NDM-1 to be a worldwide public health problem is great, and co-ordinated international surveillance is needed. Funding European Union, Wellcome Trust, and Wyeth.

2,680 citations

Journal ArticleDOI
TL;DR: A Swedish patient of Indian origin traveled to New Delhi, India, and acquired a urinary tract infection caused by a carbapenem-resistant Klebsiella pneumoniae strain that typed to the sequence type 14 complex, showing broad resistance carried on these plasmids.
Abstract: A Swedish patient of Indian origin traveled to New Delhi, India, and acquired a urinary tract infection caused by a carbapenem-resistant Klebsiella pneumoniae strain that typed to the sequence type 14 complex. The isolate, Klebsiella pneumoniae 05-506, was shown to possess a metallo-β-lactamase (MBL) but was negative for previously known MBL genes. Gene libraries and amplification of class 1 integrons revealed three resistance-conferring regions; the first contained blaCMY-4 flanked by ISEcP1 and blc. The second region of 4.8 kb contained a complex class 1 integron with the gene cassettes arr-2, a new erythromycin esterase gene; ereC; aadA1; and cmlA7. An intact ISCR1 element was shown to be downstream from the qac/sul genes. The third region consisted of a new MBL gene, designated blaNDM-1, flanked on one side by K. pneumoniae DNA and a truncated IS26 element on its other side. The last two regions lie adjacent to one another, and all three regions are found on a 180-kb region that is easily transferable to recipient strains and that confers resistance to all antibiotics except fluoroquinolones and colistin. NDM-1 shares very little identity with other MBLs, with the most similar MBLs being VIM-1/VIM-2, with which it has only 32.4% identity. As well as possessing unique residues near the active site, NDM-1 also has an additional insert between positions 162 and 166 not present in other MBLs. NDM-1 has a molecular mass of 28 kDa, is monomeric, and can hydrolyze all β-lactams except aztreonam. Compared to VIM-2, NDM-1 displays tighter binding to most cephalosporins, in particular, cefuroxime, cefotaxime, and cephalothin (cefalotin), and also to the penicillins. NDM-1 does not bind to the carbapenems as tightly as IMP-1 or VIM-2 and turns over the carbapenems at a rate similar to that of VIM-2. In addition to K. pneumoniae 05-506, blaNDM-1 was found on a 140-kb plasmid in an Escherichia coli strain isolated from the patient's feces, inferring the possibility of in vivo conjugation. The broad resistance carried on these plasmids is a further worrying development for India, which already has high levels of antibiotic resistance.

2,144 citations

Journal ArticleDOI
TL;DR: Rapid identification of colonized or infected patients and screening of carriers is possible, and will probably be effective for prevention of a scenario of endemicity, as now reported for extended-spectrum β-lactamase producers in all European countries.

777 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: An update on potentially effective antibacterial drugs in the late-stage development pipeline is provided, in the hope of encouraging collaboration between industry, academia, the National Institutes of Health, the Food and Drug Administration, and the Centers for Disease Control and Prevention work productively together.
Abstract: The Infectious Diseases Society of America (IDSA) continues to view with concern the lean pipeline for novel therapeutics to treat drug-resistant infections, especially those caused by gram-negative pathogens. Infections now occur that are resistant to all current antibacterial options. Although the IDSA is encouraged by the prospect of success for some agents currently in preclinical development, there is an urgent, immediate need for new agents with activity against these panresistant organisms. There is no evidence that this need will be met in the foreseeable future. Furthermore, we remain concerned that the infrastructure for discovering and developing new antibacterials continues to stagnate, thereby risking the future pipeline of antibacterial drugs. The IDSA proposed solutions in its 2004 policy report, “Bad Bugs, No Drugs: As Antibiotic R&D Stagnates, a Public Health Crisis Brews,” and recently issued a “Call to Action” to provide an update on the scope of the problem and the proposed solutions. A primary objective of these periodic reports is to encourage a community and legislative response to establish greater financial parity between the antimicrobial development and the development of other drugs. Although recent actions of the Food and Drug Administration and the 110th US Congress present a glimmer of hope, significant uncertainly remains. Now, more than ever, it is essential to create a robust and sustainable antibacterial research and development infrastructure—one that can respond to current antibacterial resistance now and anticipate evolving resistance. This challenge requires that industry, academia, the National Institutes of Health, the Food and Drug Administration, the Centers for Disease Control and Prevention, the US Department of Defense, and the new Biomedical Advanced Research and Development Authority at the Department of Health and Human Services work productively together. This report provides an update on potentially effective antibacterial drugs in the late-stage development pipeline, in the hope of encouraging such collaborative action.

4,256 citations

Journal ArticleDOI
TL;DR: The emergence of MCR-1 heralds the breach of the last group of antibiotics, polymyxins, by plasmid-mediated resistance, in Enterobacteriaceae and emphasise the urgent need for coordinated global action in the fight against pan-drug-resistant Gram-negative bacteria.
Abstract: Summary Background Until now, polymyxin resistance has involved chromosomal mutations but has never been reported via horizontal gene transfer. During a routine surveillance project on antimicrobial resistance in commensal Escherichia coli from food animals in China, a major increase of colistin resistance was observed. When an E coli strain, SHP45, possessing colistin resistance that could be transferred to another strain, was isolated from a pig, we conducted further analysis of possible plasmid-mediated polymyxin resistance. Herein, we report the emergence of the first plasmid-mediated polymyxin resistance mechanism, MCR-1, in Enterobacteriaceae. Methods The mcr-1 gene in E coli strain SHP45 was identified by whole plasmid sequencing and subcloning. MCR-1 mechanistic studies were done with sequence comparisons, homology modelling, and electrospray ionisation mass spectrometry. The prevalence of mcr-1 was investigated in E coli and Klebsiella pneumoniae strains collected from five provinces between April, 2011, and November, 2014. The ability of MCR-1 to confer polymyxin resistance in vivo was examined in a murine thigh model. Findings Polymyxin resistance was shown to be singularly due to the plasmid-mediated mcr-1 gene. The plasmid carrying mcr-1 was mobilised to an E coli recipient at a frequency of 10 −1 to 10 −3 cells per recipient cell by conjugation, and maintained in K pneumoniae and Pseudomonas aeruginosa . In an in-vivo model, production of MCR-1 negated the efficacy of colistin. MCR-1 is a member of the phosphoethanolamine transferase enzyme family, with expression in E coli resulting in the addition of phosphoethanolamine to lipid A. We observed mcr-1 carriage in E coli isolates collected from 78 (15%) of 523 samples of raw meat and 166 (21%) of 804 animals during 2011–14, and 16 (1%) of 1322 samples from inpatients with infection. Interpretation The emergence of MCR-1 heralds the breach of the last group of antibiotics, polymyxins, by plasmid-mediated resistance. Although currently confined to China, MCR-1 is likely to emulate other global resistance mechanisms such as NDM-1. Our findings emphasise the urgent need for coordinated global action in the fight against pan-drug-resistant Gram-negative bacteria. Funding Ministry of Science and Technology of China, National Natural Science Foundation of China.

3,647 citations

Journal ArticleDOI
TL;DR: The global situation of antibiotic resistance, its major causes and consequences, and key areas in which action is urgently needed are described and identified.
Abstract: The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.

3,181 citations