scispace - formally typeset
Search or ask a question
Author

Christian Jonasson

Bio: Christian Jonasson is an academic researcher from Research Institutes of Sweden. The author has contributed to research in topics: Magnetic nanoparticles & Magnetization. The author has an hindex of 15, co-authored 32 publications receiving 559 citations. Previous affiliations of Christian Jonasson include Kigali Institute of Science and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the poling and characteristics of a melt-spun piezoelectric bicomponent fiber with poly(vinylidene fluoride) (PVDF) as its sheath component and a conductive composite with car...
Abstract: This study reports on the poling and characteristics of a melt-spun piezoelectric bicomponent fiber with poly(vinylidene fluoride) (PVDF) as its sheath component and a conductive composite with car ...

111 citations

Journal ArticleDOI
TL;DR: Using two AC susceptometers with overlapping frequency ranges, it is demonstrated that this approach is an effective way to probe particle relaxation characteristics from a few Hz to 10 MHz, the frequencies relevant for MPI, hyperthermia, and sensing.
Abstract: Magnetic relaxation is exploited in innovative biomedical applications of magnetic particles such as magnetic particle imaging (MPI), magnetic fluid hyperthermia, and bio-sensing. Relaxation behavior should be optimized to achieve high performance imaging, efficient heating, and good SNR in bio-sensing. Using two AC susceptometers with overlapping frequency ranges, we have measured the relaxation behavior of a series of monodisperse magnetic particles and demonstrated that this approach is an effective way to probe particle relaxation characteristics from a few Hz to 10 MHz, the frequencies relevant for MPI, hyperthermia, and sensing.

52 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multiple-core and single-core nanoparticles and correlated the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM).

49 citations

Journal ArticleDOI
TL;DR: In this article, a piezoelectric bicomponent fiber with poly(vinylidene fluoride) as the electroactive sheath component was demonstrated, with a voltage output (peak-to-peak) of up to 40 mV under lateral compression.
Abstract: Melt spinning of a novel piezoelectric bicomponent fiber, with poly(vinylidene fluoride) as the electroactive sheath component, has been demonstrated. An electrically conductive compound of carbon black (CB) and high density polyethylene was used as core material, working as an inner electrode. A force sensor consisting of a number of fibers embedded in a soft CB/polyolefin elastomer matrix was manufactured for characterization. The fibers showed a clear piezoelectric effect, with a voltage output (peak-to-peak) of up to 40 mV under lateral compression. This continuous all-polymer piezoelectric fiber introduces new possibilities toward minimal single fiber sensors as well as large area sensors produced in standard industrial weaving machines.

49 citations

Proceedings ArticleDOI
03 Dec 2010
TL;DR: In this article, the authors report on the development of a sensitive high frequency susceptometer capable of measuring in the frequency range from 25 kHz up to 10 MHz with a volume susceptibility sensitivity of 3.5×l0−5 at 100 kHz.
Abstract: We report on the development of a sensitive high frequency susceptometer capable of measuring in the frequency range from 25 kHz up to 10 MHz with a volume susceptibility sensitivity of 3.5×l0−5 at 100 kHz corresponding to about 0.3% of the measured AC susceptibility. In combination with the previous reported DynoMag system capable of measuring dynamic magnetic properties in the range from 1 Hz to 200 kHz we are thus able to measure dynamic magnetic properties between 1 Hz to 10 MHz with high magnetic sensitivity. We will show AC susceptometry applications and results within the fields of magnetic hyperthermia and dynamic magnetic characterization of magnetic nanoparticle system with different particle sizes and magnetic properties.

45 citations


Cited by
More filters
01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
TL;DR: This review covers the principles, advantages, and drawbacks of passive and active targeting based on various polymer and magnetic iron oxide nanoparticle carriers with drug attached by both covalent and noncovalent pathways.
Abstract: Targeted delivery combined with controlled drug release has a pivotal role in the future of personalized medicine. This review covers the principles, advantages, and drawbacks of passive and active targeting based on various polymer and magnetic iron oxide nanoparticle carriers with drug attached by both covalent and noncovalent pathways. Attention is devoted to the tailored conjugation of targeting ligands (e.g., enzymes, antibodies, peptides) to drug carrier systems. Similarly, the approaches toward controlled drug release are discussed. Various polymer–drug conjugates based, for example, on polyethylene glycol (PEG), N-(2-hydroxypropyl)methacrylamide (HPMA), polymeric micelles, and nanoparticle carriers are explored with respect to absorption, distribution, metabolism, and excretion (ADME scheme) of administrated drug. Design and structure of superparamagnetic iron oxide nanoparticles (SPION) and condensed magnetic clusters are classified according to the mechanism of noncovalent drug loading involving...

1,241 citations

Journal ArticleDOI
TL;DR: A critical review is presented on the current state of the arts of wearable fiber/fabric-based piezoelectric nanogenerators and triboelectrics with respect to basic classifications, material selections, fabrication techniques, structural designs, and working principles, as well as potential applications.
Abstract: Integration of advanced nanogenerator technology with conventional textile processes fosters the emergence of textile-based nanogenerators (NGs), which will inevitably promote the rapid development and widespread applications of next-generation wearable electronics and multifaceted artificial intelligence systems. NGs endow smart textiles with mechanical energy harvesting and multifunctional self-powered sensing capabilities, while textiles provide a versatile flexible design carrier and extensive wearable application platform for their development. However, due to the lack of an effective interactive platform and communication channel between researchers specializing in NGs and those good at textiles, it is rather difficult to achieve fiber/fabric-based NGs with both excellent electrical output properties and outstanding textile-related performances. To this end, a critical review is presented on the current state of the arts of wearable fiber/fabric-based piezoelectric nanogenerators and triboelectric nanogenerators with respect to basic classifications, material selections, fabrication techniques, structural designs, and working principles, as well as potential applications. Furthermore, the potential difficulties and tough challenges that can impede their large-scale commercial applications are summarized and discussed. It is hoped that this review will not only deepen the ties between smart textiles and wearable NGs, but also push forward further research and applications of future wearable fiber/fabric-based NGs.

729 citations

Journal ArticleDOI
TL;DR: A broad overview of magnetic hyperthermia addressing new perspectives and the progress on relevant features such as the ad hoc preparation of magnetic nanoparticles, physical modeling of magnetic heating, methods to determine the heat dissipation power of magnetic colloids including the development of experimental apparatus and the influence of biological matrices on the heating efficiency is presented in this article.
Abstract: Nowadays, magnetic hyperthermia constitutes a complementary approach to cancer treatment. The use of magnetic particles as heating mediators, proposed in the 1950s, provides a novel strategy for improving tumor treatment and, consequently, patient's quality of life. This review reports a broad overview about several aspects of magnetic hyperthermia addressing new perspectives and the progress on relevant features such as the ad hoc preparation of magnetic nanoparticles, physical modeling of magnetic heating, methods to determine the heat dissipation power of magnetic colloids including the development of experimental apparatus and the influence of biological matrices on the heating efficiency.

545 citations

Journal ArticleDOI
TL;DR: With worldwide efforts, innovations in chemistry and materials elaborated in this review will push forward the frontiers of smart textiles, which will soon revolutionize the authors' lives in the era of Internet of Things.
Abstract: Textiles have been concomitant of human civilization for thousands of years. With the advances in chemistry and materials, integrating textiles with energy harvesters will provide a sustainable, environmentally friendly, pervasive, and wearable energy solution for distributed on-body electronics in the era of Internet of Things. This article comprehensively and thoughtfully reviews research activities regarding the utilization of smart textiles for harvesting energy from renewable energy sources on the human body and its surroundings. Specifically, we start with a brief introduction to contextualize the significance of smart textiles in light of the emerging energy crisis, environmental pollution, and public health. Next, we systematically review smart textiles according to their abilities to harvest biomechanical energy, body heat energy, biochemical energy, solar energy as well as hybrid forms of energy. Finally, we provide a critical analysis of smart textiles and insights into remaining challenges and future directions. With worldwide efforts, innovations in chemistry and materials elaborated in this review will push forward the frontiers of smart textiles, which will soon revolutionize our lives in the era of Internet of Things.

536 citations