scispace - formally typeset
Search or ask a question
Author

Christian Kühnert

Bio: Christian Kühnert is an academic researcher from Dresden University of Technology. The author has contributed to research in topics: Organizational structure & Emergency management. The author has an hindex of 7, co-authored 8 publications receiving 2356 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Empirical evidence is presented indicating that the processes relating urbanization to economic development and knowledge creation are very general, being shared by all cities belonging to the same urban system and sustained across different nations and times.
Abstract: ‡§ ¶ Humanity has just crossed a major landmark in its history with the majority of people now living in cities. Cities have long been known to be society’s predominant engine of innovation and wealth creation, yet they are also its main source of crime, pollution, and disease. The inexorable trend toward urbanization worldwide presents an urgent challenge for developing a predictive, quantitative theory of urban organization and sustainable development. Here we present empirical evidence indicating that the processes relating urbanization to economic development and knowledge creation are very general, being shared by all cities belonging to the same urban system and sustained across different nations and times. Many diverse properties of cities from patent production and personal income to electrical cable length are shown to be power law functions of population size with scaling exponents, , that fall into distinct universality classes. Quantities reflecting wealth creation and innovation have 1.2 >1 (increasing returns), whereas those accounting for infrastructure display 0.8 <1 (economies of scale). We predict that the pace of social life in the city increases with population size, in quantitative agreement with data, and we discuss how cities are similar to, and differ from, biological organisms, for which <1. Finally, we explore possible consequences of these scaling relations by deriving growth equations, which quantify the dramatic difference between growth fueled by innovation versus that driven by economies of scale. This difference suggests that, as population grows, major innovation cycles must be generated at a continually accelerating rate to sustain growth and avoid stagnation or collapse. population sustainability urban studies increasing returns economics of scale

2,224 citations

Journal ArticleDOI
TL;DR: Spatial distribution systems for energy, fuel, medical, and food supply are studied and it is found that these systems show power-law scaling as well, when the number of "supply stations" is plotted over the population size.
Abstract: In previous work, it has been proposed that urban structures may be understood as a result of self-organization principles. In particular, researchers have identified fractal structures of public transportation networks and land use patterns. Here, we will study spatial distribution systems for energy, fuel, medical, and food supply. It is found that these systems show power-law scaling as well, when the number of “supply stations” is plotted over the population size. Surprisingly, only some supply systems display a linear scaling with population size. Others show sublinear or superlinear scaling. We suggest an interpretation regarding the kind of scaling law that is expected in dependence of the function and constraints of the respective supply system.

155 citations

Journal ArticleDOI
TL;DR: The effectiveness of recovery strategies for a dynamic model of failure spreading in networks, focused on the comparison of strategies for different scenarios and the determination of the most appropriate strategy, is studied.
Abstract: We study the effectiveness of recovery strategies for a dynamic model of failure spreading in networks. These strategies control the distribution of resources based on information about the current network state and network topology. In order to assess their success, we have performed a series of simulation experiments. The considered parameters of these experiments are the network topology, the response time delay, and the overall disposition of resources. Our investigations are focused on the comparison of strategies for different scenarios and the determination of the most appropriate strategy. The importance of prompt response and the minimum sufficient quantity of resources are discussed as well.

90 citations

Book ChapterDOI
01 Jan 2006
TL;DR: In this article, the authors investigate the interaction networks responsible for the cascade-like spreading of disasters, and identify other fields where network theory could help to improve disaster response management, including disaster management.
Abstract: We discuss why disasters occur more frequently and are more serious than expected according to a normal distribution. Moreover, we investigate the interaction networks responsible for the cascade-like spreading of disasters. Such causality networks allow one to estimate the development of disasters with time, to give hints about when to take certain actions, to assess the suitability of alternative measures of emergency management, and to anticipate their side effects. Finally, we identify other fields where network theory could help to improve disaster response management.

83 citations

Journal ArticleDOI
TL;DR: A versatile method for the investigation of interaction networks is presented and it is shown how to use it to assess effects of indirect interactions and feedback loops and can, in principle, provide decision support to the emergency management during a disaster.
Abstract: In this paper, we present a versatile method for the investigation of interaction networks and show how to use it to assess effects of indirect interactions and feedback loops. The method allows to evaluate the impact of optimization measures or failures on the system. Here, we will apply it to the investigation of catastrophes, in particular to the temporal development of disasters (catastrophe dynamics). The mathematical methods are related to the master equation, which allows the application of the well-known solution methods. We will also indicate connections of disaster management with excitable media and supply networks. This facilitates to study the effects of measures taken by the emergency management or the local operation units. With a fictious, but more or less realistic example of a spreading epidemic disease or a wave of influenza, we illustrate how this method can, in principle, provide decision support to the emergency management during such a disaster.

73 citations


Cited by
More filters
Journal ArticleDOI
08 Feb 2008-Science
TL;DR: Urban ecology integrates natural and social sciences to study these radically altered local environments and their regional and global effects of an increasingly urbanized world.
Abstract: Urban areas are hot spots that drive environmental change at multiple scales. Material demands of production and human consumption alter land use and cover, biodiversity, and hydrosystems locally to regionally, and urban waste discharge affects local to global biogeochemical cycles and climate. For urbanites, however, global environmental changes are swamped by dramatic changes in the local environment. Urban ecology integrates natural and social sciences to study these radically altered local environments and their regional and global effects. Cities themselves present both the problems and solutions to sustainability challenges of an increasingly urbanized world.

5,096 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
Rob Kitchin1
TL;DR: The authors examines how the availability of Big Data, coupled with new data analytics, challenges established epistemologies across the sciences, social sciences and humanities, and assesses the extent to which they are engendering paradigm shifts across multiple disciplines.
Abstract: This article examines how the availability of Big Data, coupled with new data analytics, challenges established epistemologies across the sciences, social sciences and humanities, and assesses the extent to which they are engendering paradigm shifts across multiple disciplines. In particular, it critically explores new forms of empiricism that declare ‘the end of theory’, the creation of data-driven rather than knowledge-driven science, and the development of digital humanities and computational social sciences that propose radically different ways to make sense of culture, history, economy and society. It is argued that: (1) Big Data and new data analytics are disruptive innovations which are reconfiguring in many instances how research is conducted; and (2) there is an urgent need for wider critical reflection within the academy on the epistemological implications of the unfolding data revolution, a task that has barely begun to be tackled despite the rapid changes in research practices presently taking place. After critically reviewing emerging epistemological positions, it is contended that a potentially fruitful approach would be the development of a situated, reflexive and contextually nuanced epistemology.

1,463 citations

Journal ArticleDOI
27 Jan 2005-Nature
TL;DR: A power-law relation is identified between the number of boxes needed to cover the network and the size of the box, defining a finite self-similar exponent to explain the scale-free nature of complex networks and suggest a common self-organization dynamics.
Abstract: Complex networks have been studied extensively owing to their relevance to many real systems such as the world-wide web, the Internet, energy landscapes and biological and social networks. A large number of real networks are referred to as 'scale-free' because they show a power-law distribution of the number of links per node. However, it is widely believed that complex networks are not invariant or self-similar under a length-scale transformation. This conclusion originates from the 'small-world' property of these networks, which implies that the number of nodes increases exponentially with the 'diameter' of the network, rather than the power-law relation expected for a self-similar structure. Here we analyse a variety of real complex networks and find that, on the contrary, they consist of self-repeating patterns on all length scales. This result is achieved by the application of a renormalization procedure that coarse-grains the system into boxes containing nodes within a given 'size'. We identify a power-law relation between the number of boxes needed to cover the network and the size of the box, defining a finite self-similar exponent. These fundamental properties help to explain the scale-free nature of complex networks and suggest a common self-organization dynamics.

1,303 citations

Journal ArticleDOI
05 Apr 2012-Nature
TL;DR: A stochastic process capturing local mobility decisions that helps to derive commuting and mobility fluxes that require as input only information on the population distribution is introduced, significantly improving the predictive accuracy of most of the phenomena affected by mobility and transport processes.
Abstract: A parameter-free model predicts patterns of commuting, phone calls and trade using only population density at all intermediate points. Since the 1940s, planners needing to predict population movement, transport-network usage and even epidemics have turned to a model based on the 'gravity law'. This assumes that the number of individuals travelling between two locations is proportional to the population at the source and destination, and decays with distance. This approach has its limitations, because it looks at the flow between two specific points only. Here, Albert-Laszlo Barabasi and colleagues present an alternative model that takes into account population density at all intermediate points. Their parameter-free radiation model predicts a range of phenomena — from commuting and migrations to phone calls — much more accurately than the gravity model. Needing only data on population densities, which are easy to measure, the system can be used to predict commuting and transport patterns even in areas where data are not collected systematically. Introduced in its contemporary form in 1946 (ref. 1), but with roots that go back to the eighteenth century2, the gravity law1,3,4 is the prevailing framework with which to predict population movement3,5,6, cargo shipping volume7 and inter-city phone calls8,9, as well as bilateral trade flows between nations10. Despite its widespread use, it relies on adjustable parameters that vary from region to region and suffers from known analytic inconsistencies. Here we introduce a stochastic process capturing local mobility decisions that helps us analytically derive commuting and mobility fluxes that require as input only information on the population distribution. The resulting radiation model predicts mobility patterns in good agreement with mobility and transport patterns observed in a wide range of phenomena, from long-term migration patterns to communication volume between different regions. Given its parameter-free nature, the model can be applied in areas where we lack previous mobility measurements, significantly improving the predictive accuracy of most of the phenomena affected by mobility and transport processes11,12,13,14,15,16,17,18,19,20,21,22,23.

1,237 citations