scispace - formally typeset
Search or ask a question
Author

Christian Lévêque

Bio: Christian Lévêque is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Biodiversity & Synaptic vesicle. The author has an hindex of 28, co-authored 56 publications receiving 7777 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities and advocates continuing attempts to check species loss but urges adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods.
Abstract: Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and - in the case of migrating aquatic fauna - downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade-offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long-term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management - one that has been appropriately termed 'reconciliation ecology'.

5,857 citations

Journal ArticleDOI
TL;DR: An exceptionally high faunal diversity occurs in ancient lakes, where one of the most noteworthy features is the existence of radiations of species that apparently result from intra-lacustrine speciation.
Abstract: The precise number of extant fish species remains to be determined. About 28,900 species were listed in FishBase in 2005, but some experts feel that the final total may be considerably higher. Freshwater fishes comprise until now almost 13,000 species (and 2,513 genera) (including only freshwater and strictly peripheral species), or about 15,000 if all species occurring from fresh to brackishwaters are included. Noteworthy is the fact that the estimated 13,000 strictly freshwater fish species live in lakes and rivers that cover only 1% of the earth’s surface, while the remaining 16,000 species live in salt water covering a full 70%. While freshwater species belong to some 170 families (or 207 if peripheral species are also considered), the bulk of species occur in a relatively few groups: the Characiformes, Cypriniformes, Siluriformes, and Gymnotiformes, the Perciformes (noteably the family Cichlidae), and the Cyprinodontiformes. Biogeographically the distribution of strictly freshwater species and genera are, respectively 4,035 species (705 genera) in the Neotropical region, 2,938 (390 genera) in the Afrotropical, 2,345 (440 genera) in the Oriental, 1,844 (380 genera) in the Palaearctic, 1,411 (298 genera) in the Nearctic, and 261 (94 genera) in the Australian. For each continent, the main characteristics of the ichthyofauna are briefly outlined. At this continental scale, ichthyologists have also attempted to identify ichthyological ‘‘provinces’’ that are regions with a distinctive evolutionary history and hence more or less characteristic biota at the species level. Ichthyoregions are currently identified in each continent, except for Asia. An exceptionally high faunal diversity occurs in ancient lakes, where one of the most noteworthy features is the existence of radiations of species that apparently result from intra-lacustrine speciation. Numerous fish-species flocks have been identified in various ancient lakes that are exceptional natural sites for the study of speciation. The major threats to fish biodiversity are intense and have been relatively well documented: overexploitation, flow modification, destruction of habitats, invasion by exotic species, pollution including the worldwide phenomena of eutrophication and sedimentation, all of which are interacting.

453 citations

Journal ArticleDOI
TL;DR: The diversity and distribution of vertebrates, insects, crustaceans, molluscs and a suite of minor phyla is compared and commented upon and it is shown that data are deficient for many other groups.
Abstract: We present a summary of the results included in the different treatments in this volume. The diversity and distribution of vertebrates, insects, crustaceans, molluscs and a suite of minor phyla is compared and commented upon. Whereas the available data on vertebrates and some emblematic invertebrate groups such as Odonata (dragonflies and damselflies) allow for a credible assessment, data are deficient for many other groups. This is owing to knowledge gaps, both in geographical coverage of available data and/or lack of taxonomic information. These gaps need to be addressed urgently, either by liberating date from inaccessible repositories or by fostering taxonomic research. A similar effort is required to compile environmental and ecological information in order to enable cross-linking and analysis of these complementary data sets. Only in this way will it be possible to analyse information on freshwater biodiversity for sustainable management and conservation of the world’s freshwater resources.

422 citations

Journal ArticleDOI
TL;DR: A broad array of other anthropogenic factors, such as land cover change, engineering of river channels, irrigation and other consumptive losses, aquatic habitat disappearance, and pollution, also influences the water system in direct and important ways.
Abstract: Fresh water figures prominently in the machinery of the Earth system and is key to understanding the full scope of global change. Greenhouse warming with a potentially accelerated hydrologic cycle is already a well-articulated science issue, with strong policy implications. A broad array of other anthropogenic factors—widespread land cover change, engineering of river channels, irrigation and other consumptive losses, aquatic habitat disappearance, and pollution—also influences the water system in direct and important ways. A rich history of site-specific research demonstrates the clear impact of such factors on local environments. Evidence now shows that humans are rapidly intervening in the basic character of the water cycle over much broader domains. The collective significance of these many transformations on both the Earth system and human society remains fundamentally unknown [Framing Committee of the GWSP, 2004].

221 citations

Book
13 May 1997
TL;DR: This book discusses the diversity and variability of freshwater ecosystems in tropical Africa, the role of fish biodiversity, and the threats to fish biodiversity.
Abstract: Introduction Acknowledgements Part I. The Diversity of African Freshwater Fish: 1. The diversity and variability of freshwater ecosystems in tropical Africa 2. The fish fauna of Africa 3. Genetic diversity and mechanisms of speciation Part II. The Past as a Key to Understanding the Present: 4. Species diversity: evolution at work 5. Classification of diversity 6. Chance and challenge in a changing environment Part III. The Diverse Lifestyles of African Freshwater Fish: 7. Diversity of growth and feeding behaviours 8. Diversity of reproductive strategies and life histories 9. Diversity of responses to environmental constraints Part IV. Dynamics of Fish Assemblages: 10. Fish assemblages in tropical Africa 11. Equilibrium processes of species richness and diversity 12. Diversity of habitats, temporal change and assemblage dynamics 13. Fish diversity and ecosystem functioning Part V. Conservation of Biodiversity: 14. The threats to fish biodiversity 15. The economic role of fish biodiversity 16. Conservation options Bibliography Species index Subject index.

196 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
J. Craig Venter1, Mark Raymond Adams1, Eugene W. Myers1, Peter W. Li1  +269 moreInstitutions (12)
16 Feb 2001-Science
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Abstract: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.

12,098 citations

Journal ArticleDOI
TL;DR: This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities and advocates continuing attempts to check species loss but urges adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods.
Abstract: Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and - in the case of migrating aquatic fauna - downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade-offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long-term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management - one that has been appropriately termed 'reconciliation ecology'.

5,857 citations

Journal ArticleDOI
30 Sep 2010-Nature
TL;DR: The first worldwide synthesis to jointly consider human and biodiversity perspectives on water security using a spatial framework that quantifies multiple stressors and accounts for downstream impacts is presented.
Abstract: Protecting the world’s freshwater resources requires diagnosing threats over a broad range of scales, from global to local. Here we present the first worldwide synthesis to jointly consider human and biodiversity perspectives on water security using a spatial framework that quantifies multiple stressors and accounts for downstream impacts. We find that nearly 80% of the world’s population is exposed to high levels of threat to water security. Massive investment in water technology enables rich nations to offset high stressor levels without remedying their underlying causes, whereas less wealthy nations remain vulnerable. A similar lack of precautionary investment jeopardizes biodiversity, with habitats associated with 65% of continental discharge classified as moderately to highly threatened. The cumulative threat framework offers a tool for prioritizing policy and management responses to this crisis, and underscores the necessity of limiting threats at their source instead of through costly remediation of symptoms in order to assure global water security for both humans and freshwater biodiversity.

5,401 citations

Journal ArticleDOI
TL;DR: In an effort to develop quantitative relationships between various kinds of flow alteration and ecological responses, this paper reviewed 165 papers published over the last four decades, with a focus on more recent papers.
Abstract: Summary 1. In an effort to develop quantitative relationships between various kinds of flow alteration and ecological responses, we reviewed 165 papers published over the last four decades, with a focus on more recent papers. Our aim was to determine if general relationships could be drawn from disparate case studies in the literature that might inform environmental flows science and management. 2. For all 165 papers we characterised flow alteration in terms of magnitude, frequency, duration, timing and rate of change as reported by the individual studies. Ecological responses were characterised according to taxonomic identity (macroinvertebrates, fish, riparian vegetation) and type of response (abundance, diversity, demographic parameters). A ‘qualitative’ or narrative summary of the reported results strongly corroborated previous, less comprehensive, reviews by documenting strong and variable ecological responses to all types of flow alteration. Of the 165 papers, 152 (92%) reported decreased values for recorded ecological metrics in response to a variety of types of flow alteration, whereas 21 papers (13%) reported increased values. 3. Fifty-five papers had information suitable for quantitative analysis of ecological response to flow alteration. Seventy per cent of these papers reported on alteration in flow magnitude, yielding a total of 65 data points suitable for analysis. The quantitative analysis provided some insight into the relative sensitivities of different ecological groups to alteration in flow magnitudes, but robust statistical relationships were not supported. Macroinvertebrates showed mixed responses to changes in flow magnitude, with abundance and diversity both increasing and decreasing in response to elevated flows and to reduced flows. Fish abundance, diversity and demographic rates consistently declined in response to both elevated and reduced flow magnitude. Riparian vegetation metrics both increased and decreased in response to reduced peak flows, with increases reflecting mostly enhanced non-woody vegetative cover or encroachment into the stream channel. 4. Our analyses do not support the use of the existing global literature to develop general, transferable quantitative relationships between flow alteration and ecological response; however, they do support the inference that flow alteration is associated with ecological change and that the risk of ecological change increases with increasing magnitude of flow alteration. 5. New sampling programs and analyses that target sites across well-defined gradients of flow alteration are needed to quantify ecological response and develop robust and general flow alteration–ecological response relationships. Similarly, the collection of pre- and post-alteration data for new water development programs would significantly add to our basic understanding of ecological responses to flow alteration.

1,761 citations