scispace - formally typeset
Search or ask a question
Author

Christian Smorra

Bio: Christian Smorra is an academic researcher from CERN. The author has contributed to research in topics: Antiproton & Penning trap. The author has an hindex of 18, co-authored 55 publications receiving 1162 citations. Previous affiliations of Christian Smorra include Heidelberg University & University of Mainz.


Papers
More filters
Journal ArticleDOI
12 Aug 2015-Nature
TL;DR: The result can be interpreted as a stringent test of the weak equivalence principle of general relativity using baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of < 8.7 × 10−7.
Abstract: Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of <720 parts per trillion. By following the arguments of ref. 11, our result can be interpreted as a stringent test of the weak equivalence principle of general relativity using baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of |α − 1| < 8.7 × 10(-7).

151 citations

Journal ArticleDOI
18 Oct 2017-Nature
TL;DR: A high-precision measurement of the magnetic moment of the antiproton in units of the nuclear magneton μN with a fractional precision of 1.5 parts per billion is reported, which constrains the magnitude of certain CPT-violating effects to below 1.8 × 10−24 gigaelectronvolts.
Abstract: The magnetic moment of the antiproton is measured at the parts-per-billion level, improving on previous measurements by a factor of about 350. Comparing the fundamental properties of normal-matter particles with their antimatter counterparts tests charge–parity–time (CPT) invariance, which is an important part of the standard model of particle physics. Many properties have been measured to the parts-per-billion level of uncertainty, but the magnetic moment of the antiproton has not. Christian Smorra and colleagues have now done so, and report that it is −2.7928473441 ± 0.0000000042 in units of the nuclear magneton. This is consistent with the magnetic moment of the proton, 2.792847350 ± 0.000000009 in the same units. Assuming CPT invariance, these two values should be the same, except for the difference in sign, so this result provides a more stringent constraint on certain CPT-violating effects. Precise comparisons of the fundamental properties of matter–antimatter conjugates provide sensitive tests of charge–parity–time (CPT) invariance1, which is an important symmetry that rests on basic assumptions of the standard model of particle physics. Experiments on mesons2, leptons3,4 and baryons5,6 have compared different properties of matter–antimatter conjugates with fractional uncertainties at the parts-per-billion level or better. One specific quantity, however, has so far only been known to a fractional uncertainty at the parts-per-million level7,8: the magnetic moment of the antiproton, . The extraordinary difficulty in measuring with high precision is caused by its intrinsic smallness; for example, it is 660 times smaller than the magnetic moment of the positron3. Here we report a high-precision measurement of in units of the nuclear magneton μN with a fractional precision of 1.5 parts per billion (68% confidence level). We use a two-particle spectroscopy method in an advanced cryogenic multi-Penning trap system. Our result = −2.7928473441(42)μN (where the number in parentheses represents the 68% confidence interval on the last digits of the value) improves the precision of the previous best measurement8 by a factor of approximately 350. The measured value is consistent with the proton magnetic moment9, μp = 2.792847350(9)μN, and is in agreement with CPT invariance. Consequently, this measurement constrains the magnitude of certain CPT-violating effects10 to below 1.8 × 10−24 gigaelectronvolts, and a possible splitting of the proton–antiproton magnetic moments by CPT-odd dimension-five interactions to below 6 × 10−12 Bohr magnetons11.

117 citations

Journal ArticleDOI
TL;DR: The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies.
Abstract: The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beamline for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also heavy nuclides such as 235 U or 252 Cf can be investigated for the first time with an off-line ion source. The data provided by the mass measurements will be of interest for astrophysical calculations on the rapid neutron-capture process as well as for tests of mass models in the heavy-mass region. The laser spectroscopic measurements will yield model-independent information on nuclear ground-state properties such as nuclear moments and charge radii of neutron-rich nuclei of refractory elements far from stability. TRIGA-SPEC also serves as a test facility for mass and laser spectroscopic experiments at SHIPTRAP and the low-energy branch of the future GSI facility FAIR. This publication describes the experimental setup as well as its present status.

111 citations

Journal ArticleDOI
24 Nov 2017-Science
TL;DR: A direct high-precision measurement of the magnetic moment μp of the proton in units of the nuclear magneton μN is reported, which improves the previous best measurement by a factor of 11, and is consistent with the currently accepted value.
Abstract: Precise knowledge of the fundamental properties of the proton is essential for our understanding of atomic structure as well as for precise tests of fundamental symmetries. We report on a direct high-precision measurement of the magnetic moment μ p of the proton in units of the nuclear magneton μ N . The result, μ p = 2.79284734462 (±0.00000000082) μ N , has a fractional precision of 0.3 parts per billion, improves the previous best measurement by a factor of 11, and is consistent with the currently accepted value. This was achieved with the use of an optimized double–Penning trap technique. Provided a similar measurement of the antiproton magnetic moment can be performed, this result will enable a test of the fundamental symmetry between matter and antimatter in the baryonic sector at the 10 −10 level.

92 citations

Journal ArticleDOI
29 May 2014-Nature
TL;DR: The direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique is reported, which improves the precision of the forty-year-old indirect measurement and can be improved by a factor of at least 1,000.
Abstract: The magnetic moment of the proton is directly measured with unprecedented precision using a double Penning trap. Although less prominent than large synchrotron experiments, measurements of fundamental constants or atomic properties can still make valuable contributions to the search of physical laws beyond the Standard Model — if the measurement precision is high enough. In a direct measurement, Andreas Mooser et al. determine the magnetic moment of the proton with unprecedented precision. The measurement is performed using a double Penning trap, a system in which a single ion is confined and manipulated in a powerful homogeneous magnetic field. In combination with a direct measurement of the antiproton magnetic moment, this work will pave the way for a rigorous test of matter–antimatter symmetry. One of the fundamental properties of the proton is its magnetic moment, µp. So far µp has been measured only indirectly, by analysing the spectrum of an atomic hydrogen maser in a magnetic field1. Here we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique2. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity3. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the proton’s cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particle’s magnetic moment in terms of the nuclear magneton: μp = 2.792847350(9)μN. This measurement outperforms previous Penning-trap measurements4,5 in terms of precision by a factor of about 760. It improves the precision of the forty-year-old indirect measurement, in which significant theoretical bound state corrections6 were required to obtain µp, by a factor of 3. By application of this method to the antiproton magnetic moment, the fractional precision of the recently reported value7 can be improved by a factor of at least 1,000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons8.

81 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the application of atomic physics to address important challenges in physics and to look for variations in the fundamental constants, search for interactions beyond the standard model of particle physics and test the principles of general relativity.
Abstract: Advances in atomic physics, such as cooling and trapping of atoms and molecules and developments in frequency metrology, have added orders of magnitude to the precision of atom-based clocks and sensors. Applications extend beyond atomic physics and this article reviews using these new techniques to address important challenges in physics and to look for variations in the fundamental constants, search for interactions beyond the standard model of particle physics, and test the principles of general relativity.

1,077 citations

Journal ArticleDOI
Rathin Adhikari1, Matteo Agostini, N. Anh Ky2, N. Anh Ky3, T. Araki4, Maria Archidiacono5, M. Bahr6, J. Baur7, J. Behrens8, Fedor Bezrukov9, P. S. Bhupal Dev10, Debasish Borah11, Alexey Boyarsky12, A. de Gouvea13, C. A. de S. Pires14, H. J. de Vega15, Alex G. Dias16, P. Di Bari17, Z. Djurcic18, Kai Dolde19, H. Dorrer20, M. Durero7, O. Dragoun, Marco Drewes21, Guido Drexlin19, Ch. E. Düllmann20, Klaus Eberhardt20, Sergey Eliseev22, Christian Enss23, Nick Evans, A. Faessler24, Pavel Filianin22, V. Fischer7, Andreas Fleischmann23, Joseph A. Formaggio25, Jeroen Franse12, F.M. Fraenkle19, Carlos S. Frenk26, George M. Fuller27, L. Gastaldo23, Antonella Garzilli12, Carlo Giunti, Ferenc Glück19, Maury Goodman18, M. C. Gonzalez-Garcia28, Dmitry Gorbunov29, Dmitry Gorbunov30, Jan Hamann31, Volker Hannen8, Steen Hannestad5, Steen Honoré Hansen32, C. Hassel23, Julian Heeck33, F. Hofmann22, T. Houdy7, T. Houdy34, A. Huber19, Dmytro Iakubovskyi35, Aldo Ianni36, Alejandro Ibarra21, Richard Jacobsson37, Tesla E. Jeltema38, Josef Jochum24, Sebastian Kempf23, T. Kieck20, M. Korzeczek19, M. Korzeczek7, V. N. Kornoukhov39, Tobias Lachenmaier24, Mikko Laine40, Paul Langacker41, Thierry Lasserre, J. Lesgourgues42, D. Lhuillier7, Yufeng Li43, W. Liao44, A.W. Long45, Michele Maltoni46, Gianpiero Mangano, Nick E. Mavromatos47, Nicola Menci48, Alexander Merle22, Susanne Mertens19, Susanne Mertens49, Alessandro Mirizzi50, Alessandro Mirizzi51, Benjamin Monreal6, A. A. Nozik30, A. A. Nozik29, Andrii Neronov52, V. Niro46, Yu. N. Novikov53, L. Oberauer21, Ernst W. Otten20, Nathalie Palanque-Delabrouille7, Marco Pallavicini54, V. S. Pantuev29, Emmanouil Papastergis55, Stephen J. Parke56, Silvia Pascoli26, Sergio Pastor57, Amol V. Patwardhan27, Apostolos Pilaftsis10, D. C. Radford58, P. C.-O. Ranitzsch8, O. Rest8, Dean J. Robinson59, P. S. Rodrigues da Silva14, Oleg Ruchayskiy60, Oleg Ruchayskiy35, Norma G. Sanchez61, Manami Sasaki24, Ninetta Saviano26, Ninetta Saviano20, Aurel Schneider62, F. Schneider20, T. Schwetz19, S. Schönert21, S. Scholl24, Francesco Shankar17, Robert Shrock28, N. Steinbrink8, Louis E. Strigari63, F. Suekane64, B. Suerfu65, R. Takahashi66, N. Thi Hong Van3, Igor Tkachev29, Maximilian Totzauer22, Y. Tsai67, Christopher George Tully65, Kathrin Valerius19, José W. F. Valle57, D. Vénos, Matteo Viel48, M. Vivier7, Mei-Yu Wang63, Ch. Weinheimer8, Klaus Wendt20, Lindley Winslow25, Joachim Wolf19, Michael Wurm20, Z. Xing43, Shun Zhou43, Kai Zuber68 
Jamia Millia Islamia1, Hanoi University of Science2, Vietnam Academy of Science and Technology3, Saitama University4, Aarhus University5, University of California, Santa Barbara6, Commissariat à l'énergie atomique et aux énergies alternatives7, University of Münster8, University of Connecticut9, University of Manchester10, Indian Institute of Technology Guwahati11, Leiden University12, Northwestern University13, Federal University of Paraíba14, Centre national de la recherche scientifique15, Universidade Federal do ABC16, University of Southampton17, Argonne National Laboratory18, Karlsruhe Institute of Technology19, University of Mainz20, Technische Universität München21, Max Planck Society22, Heidelberg University23, University of Tübingen24, Massachusetts Institute of Technology25, Durham University26, University of California, San Diego27, C. N. Yang Institute for Theoretical Physics28, Russian Academy of Sciences29, Moscow Institute of Physics and Technology30, University of Sydney31, University of Copenhagen32, Université libre de Bruxelles33, Paris Diderot University34, Niels Bohr Institute35, Estácio S.A.36, CERN37, University of California, Santa Cruz38, Institute on Taxation and Economic Policy39, University of Bern40, Institute for Advanced Study41, RWTH Aachen University42, Chinese Academy of Sciences43, East China University of Science and Technology44, University of Chicago45, Autonomous University of Madrid46, King's College London47, INAF48, Lawrence Berkeley National Laboratory49, Istituto Nazionale di Fisica Nucleare50, University of Bari51, University of Geneva52, Petersburg Nuclear Physics Institute53, University of Genoa54, Kapteyn Astronomical Institute55, Fermilab56, Spanish National Research Council57, Oak Ridge National Laboratory58, University of California, Berkeley59, École Polytechnique Fédérale de Lausanne60, University of Paris61, University of Zurich62, Mitchell Institute63, Tohoku University64, Princeton University65, Shimane University66, University of Maryland, College Park67, Dresden University of Technology68
TL;DR: A comprehensive review of keV-scale neutrino Dark Matter can be found in this paper, where the role of active neutrinos in particle physics, astrophysics, and cosmology is reviewed.
Abstract: We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.

398 citations

Posted Content
TL;DR: The LHCb Upgrade II was proposed in this paper to exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHC b spectrometer.
Abstract: The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to $ 2 \times 10^{34} \rm cm^{-2}s^{-1}$, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. $CP$-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe $b\to s \ell^+\ell^-$ and $b\to d \ell^+\ell^-$ transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of $B(B^0\to\mu^+\mu^-)/B(B_s^0\to \mu^+\mu^-)$. Probing charm $CP$ violation at the $10^{-5}$ level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier.

279 citations

Proceedings Article
24 Apr 1989
TL;DR: In this article, an atomic fountain was created with a sample of laser cooled Na atoms using the Ramsey resonance technique, which has an observed linwidth of 2.0 Hz at ν = 1.772,626,129.
Abstract: We have created an atomic fountain starting with a sample of laser cooled Na atoms. Excitation of the atoms between the F=1, mF=0 and F=2, mF=0 ground states have an observed linwidth of 2.0 Hz at ν = 1,772,626,129. +1/−10 Hz using the Ramsey resonance technique.

224 citations