scispace - formally typeset
Search or ask a question
Author

Christian V. Stevens

Bio: Christian V. Stevens is an academic researcher from Ghent University. The author has contributed to research in topics: Ionic liquid & Bicyclic molecule. The author has an hindex of 45, co-authored 467 publications receiving 11742 citations. Previous affiliations of Christian V. Stevens include Katholieke Universiteit Leuven & University of Minnesota.


Papers
More filters
Journal ArticleDOI
TL;DR: The current review of 129 references describes the biological activity of several chitosan derivatives and the modes of action that have been postulated in the literature.

2,615 citations

Journal ArticleDOI
TL;DR: The kinetics and thermodynamics of thermal degradation are revealed piece by piece, assisted with computational methods, and the better understanding of the behaviour of ionic liquids at high temperature allows selective and application driven design, as well as mathematical prediction for engineering purposes.
Abstract: The increasing amount of papers published on ionic liquids generates an extensive quantity of data. The thermal stability data of divergent ionic liquids are collected in this paper with attention to the experimental set-up. The influence and importance of the latter parameters are broadly addressed. Both ramped temperature and isothermal thermogravimetric analysis are discussed, along with state-of-the-art methods, such as TGA-MS and pyrolysis-GC. The strengths and weaknesses of the different methodologies known to date demonstrate that analysis methods should be in line with the application. The combination of data from advanced analysis methods allows us to obtain in-depth information on the degradation processes. Aided with computational methods, the kinetics and thermodynamics of thermal degradation are revealed piece by piece. The better understanding of the behaviour of ionic liquids at high temperature allows selective and application driven design, as well as mathematical prediction for engineering purposes.

679 citations

Journal ArticleDOI
TL;DR: The most important parameters (molecular weight, degree of deacetylation, etc.) are discussed along with a status update on the mode of action of chitosan.

549 citations

Journal ArticleDOI
TL;DR: This review covers some of the latest and most relevant developments in the field of continuous flow chemistry with the focus on hazardous reactions.
Abstract: Over the last two decades, flow technologies have become increasingly popular in the field of organic chemistry, offering solutions for engineering and/or chemical problems. Flow reactors enhance the mass and heat transfer, resulting in rapid reaction mixing, and enable a precise control over the reaction parameters, increasing the overall process selectivity, efficiency and safety. These features allow chemists to tackle unexploited challenges in their work, with the ultimate objective making chemistry more accessible for laboratory and industrial applications, avoiding the need to store and handle toxic, reactive and explosive reagents. This review covers some of the latest and most relevant developments in the field of continuous flow chemistry with the focus on hazardous reactions.

490 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, a review of cost effective technologies and the processes to convert biomass into useful liquid bio-fuels and bioproducts, with particular focus on some biorefinery concepts based on different feedstocks aiming at the integral utilization of these feedstocks for the production of value added chemicals.
Abstract: Sustainable economic and industrial growth requires safe, sustainable resources of energy. For the future re-arrangement of a sustainable economy to biological raw materials, completely new approaches in research and development, production, and economy are necessary. The ‘first-generation’ biofuels appear unsustainable because of the potential stress that their production places on food commodities. For organic chemicals and materials these needs to follow a biorefinery model under environmentally sustainable conditions. Where these operate at present, their product range is largely limited to simple materials (i.e. cellulose, ethanol, and biofuels). Second generation biorefineries need to build on the need for sustainable chemical products through modern and proven green chemical technologies such as bioprocessing including pyrolysis, Fisher Tropsch, and other catalytic processes in order to make more complex molecules and materials on which a future sustainable society will be based. This review focus on cost effective technologies and the processes to convert biomass into useful liquid biofuels and bioproducts, with particular focus on some biorefinery concepts based on different feedstocks aiming at the integral utilization of these feedstocks for the production of value added chemicals.

2,814 citations

Journal ArticleDOI
TL;DR: Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. S. Nagar, Punjab-160 062, India, Institute of Biochemistry, Faculty of Medicine, Polytechnic University, Via Ranieri 67, IT-60100 Ancona, Italy, and Department of Medicinal Chemistry & Natural Products,The Hebrew University of Jerusalem, School of Pharmacy-Faculty of medicine, Jerusalem 91120, Israel.
Abstract: Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar,Mohali, Punjab-160 062, India, Institute of Biochemistry, Faculty of Medicine, Polytechnic University, Via Ranieri 67, IT-60100 Ancona, Italy,Green Biotechnology Research Group, The Special Division for Human Life Technology, National Institute of Advanced Industrial Science andTechnology, 1-8-31 Midorigaoka, Ikeda, Osaka-563-8577, Japan, and Department of Medicinal Chemistry & Natural Products,The Hebrew University of Jerusalem, School of Pharmacy-Faculty of Medicine, Jerusalem 91120, IsraelReceived March 2, 2004

2,570 citations