scispace - formally typeset
Search or ask a question
Author

Christian V. Stevens

Bio: Christian V. Stevens is an academic researcher from Ghent University. The author has contributed to research in topics: Ionic liquid & Bicyclic molecule. The author has an hindex of 45, co-authored 467 publications receiving 11742 citations. Previous affiliations of Christian V. Stevens include Katholieke Universiteit Leuven & University of Minnesota.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a combined computational and experimental approach is used to identify the exact nature of these structural isomers, and the results indicated that the CISA-1 isomers were interconverting (Z)-configured atropisomers.

2 citations

Journal ArticleDOI
TL;DR: In this paper, a straightforward pyrrole synthesis from diallylamines is developed by using a tandem catalyst system leading to ring-closing metathesis with the second generation Grubbs' catalyst (10%) followed by dehydrogenation in the presence of RuCl 3 ǫ×H 2 O (2%).
Abstract: A straightforward pyrrole synthesis from diallylamines is developed by using a tandem catalyst system leading to ring-closing metathesis with the second generation Grubbs’ catalyst (10%) followed by dehydrogenation in the presence of RuCl 3 × H 2 O (2%).

2 citations

Journal ArticleDOI
TL;DR: A continuous flow procedure for acid chloride formation from acrylic acid and a consecutive 1,4-addition of hydrogen chloride generating 3-chloropropionyl chloride is developed, which offers a safer alternative and is highly efficient in terms of consumption of starting product and shorter residence time.
Abstract: 3-Chloropropionyl chloride is a chemically versatile building block with applications in the field of adhesives, pharmaceuticals, herbicides and fungicides. Its current production entails problems concerning safety, prolonged reaction times and the use of excessive amounts of chlorinating reagents. We developed a continuous flow procedure for acid chloride formation from acrylic acid and a consecutive 1,4-addition of hydrogen chloride generating 3-chloropropionyl chloride, as presented in this paper. Up to 94 % conversion was reached in 25 minutes at mild temperatures and pressures. This continuous flow method offers a safer alternative and is highly efficient in terms of consumption of starting product and shorter residence time. Valorization of this building block is exemplified by the synthesis of beclamide, a compound with sedative and anticonvulsant properties. Over 80 % conversion towards this drug was achieved in 1 minute in a continuous flow setup. Further research is needed to telescope the synthesis of 3-chloropropionyl chloride and subsequent beclamide formation without intermediate purification.

2 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, a review of cost effective technologies and the processes to convert biomass into useful liquid bio-fuels and bioproducts, with particular focus on some biorefinery concepts based on different feedstocks aiming at the integral utilization of these feedstocks for the production of value added chemicals.
Abstract: Sustainable economic and industrial growth requires safe, sustainable resources of energy. For the future re-arrangement of a sustainable economy to biological raw materials, completely new approaches in research and development, production, and economy are necessary. The ‘first-generation’ biofuels appear unsustainable because of the potential stress that their production places on food commodities. For organic chemicals and materials these needs to follow a biorefinery model under environmentally sustainable conditions. Where these operate at present, their product range is largely limited to simple materials (i.e. cellulose, ethanol, and biofuels). Second generation biorefineries need to build on the need for sustainable chemical products through modern and proven green chemical technologies such as bioprocessing including pyrolysis, Fisher Tropsch, and other catalytic processes in order to make more complex molecules and materials on which a future sustainable society will be based. This review focus on cost effective technologies and the processes to convert biomass into useful liquid biofuels and bioproducts, with particular focus on some biorefinery concepts based on different feedstocks aiming at the integral utilization of these feedstocks for the production of value added chemicals.

2,814 citations

Journal ArticleDOI
TL;DR: Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. S. Nagar, Punjab-160 062, India, Institute of Biochemistry, Faculty of Medicine, Polytechnic University, Via Ranieri 67, IT-60100 Ancona, Italy, and Department of Medicinal Chemistry & Natural Products,The Hebrew University of Jerusalem, School of Pharmacy-Faculty of medicine, Jerusalem 91120, Israel.
Abstract: Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar,Mohali, Punjab-160 062, India, Institute of Biochemistry, Faculty of Medicine, Polytechnic University, Via Ranieri 67, IT-60100 Ancona, Italy,Green Biotechnology Research Group, The Special Division for Human Life Technology, National Institute of Advanced Industrial Science andTechnology, 1-8-31 Midorigaoka, Ikeda, Osaka-563-8577, Japan, and Department of Medicinal Chemistry & Natural Products,The Hebrew University of Jerusalem, School of Pharmacy-Faculty of Medicine, Jerusalem 91120, IsraelReceived March 2, 2004

2,570 citations