scispace - formally typeset
Search or ask a question
Author

Christina Buelow

Other affiliations: James Cook University
Bio: Christina Buelow is an academic researcher from Griffith University. The author has contributed to research in topics: Wetland & Ecosystem. The author has an hindex of 7, co-authored 19 publications receiving 207 citations. Previous affiliations of Christina Buelow include James Cook University.
Topics: Wetland, Ecosystem, Blue carbon, Habitat, Seagrass

Papers
More filters
Journal ArticleDOI
TL;DR: In 2019, the United Nations General Assembly (UN) declared 2021-2030 the "UN Decade on Ecosystem Restoration" and recognized the need to massively accelerate global restoration of degraded ecosystems, to fight the climate heating crisis, enhance food security, provide clean water and protect biodiversity on the planet as discussed by the authors.
Abstract: On 1 March 2019, the United Nations (UN) General Assembly (New York) declared 2021–2030 the "UN Decade on Ecosystem Restoration." This call to action has the purpose of recognizing the need to massively accelerate global restoration of degraded ecosystems, to fight the climate heating crisis, enhance food security, provide clean water and protect biodiversity on the planet. The scale of restoration will be key; for example, the Bonn Challenge has the goal to restore 350 million km2 (almost the size of India) of degraded terrestrial ecosystems by 2030. However, international support for restoration of "blue" coastal ecosystems, which provide an impressive array of benefits to people, has lagged. Only the Global Mangrove Alliance (https://mangrovealliance.org/) comes close to the Bonn Challenge, with the aim of increasing the global area of mangroves by 20% by 2030. However, mangrove scientists have reservations about this target, voicing concerns that it is unrealistic and may prompt inappropriate practices in attempting to reach this target (Lee et al., 2019). The decade of ecosystem restoration declaration also coincides with the UN Decade of Ocean Science for Sustainable Development, which aims to reverse deterioration in ocean health. If executed in a holistic and coordinated manner, signatory nations could stand to deliver on both these UN calls to action.

146 citations

Journal ArticleDOI
22 May 2020
TL;DR: In this paper, the authors provide an overview of the recent and forthcoming global datasets on mangrove extent, structure, and condition and explore the challenges of translating these new analyses into policy action and on-the-ground conservation.
Abstract: Mangrove forests are found on sheltered coastlines in tropical, subtropical, and some warm temperate regions. These forests support unique biodiversity and provide a range of benefits to coastal communities, but as a result of large-scale conversion for aquaculture, agriculture, and urbanization, mangroves are considered increasingly threatened ecosystems. Scientific advances have led to accurate and comprehensive global datasets on mangrove extent, structure, and condition, and these can support evaluation of ecosystem services and stimulate greater conservation and rehabilitation efforts. To increase the utility and uptake of these products, in this Perspective we provide an overview of these recent and forthcoming global datasets and explore the challenges of translating these new analyses into policy action and on-the-ground conservation. We describe a new platform for visualizing and disseminating these datasets to the global science community, non-governmental organizations, government officials, and rehabilitation practitioners and highlight future directions and collaborations to increase the uptake and impact of large-scale mangrove research.

65 citations

Journal ArticleDOI
TL;DR: In this article, the authors integrated comprehensive global datasets for carbon stocks, mangrove distribution, deforestation rates, and land use change drivers into a predictive model of carbon emissions, and projected emissions and foregone soil carbon sequestration potential under "business as usual" rates of Mangrove loss.
Abstract: Mangroves have among the highest carbon densities of any tropical forest. These ‘blue carbon’ ecosystems can store large amounts of carbon for long periods, and their protection reduces greenhouse gas emissions and supports climate change mitigation. Incorporating mangroves into Nationally Determined Contributions to the Paris Agreement and their valuation on carbon markets requires predicting how the management of different land‐uses can prevent future greenhouse gas emissions and increase CO2 sequestration. We integrated comprehensive global datasets for carbon stocks, mangrove distribution, deforestation rates, and land‐use change drivers into a predictive model of mangrove carbon emissions. We project emissions and foregone soil carbon sequestration potential under ‘business as usual’ rates of mangrove loss. Emissions from mangrove loss could reach 2391 Tg CO2 eq by the end of the century, or 3392 Tg CO2 eq when considering foregone soil carbon sequestration. The highest emissions were predicted in southeast and south Asia (West Coral Triangle, Sunda Shelf, and the Bay of Bengal) due to conversion to aquaculture or agriculture, followed by the Caribbean (Tropical Northwest Atlantic) due to clearing and erosion, and the Andaman coast (West Myanmar) and north Brazil due to erosion. Together, these six regions accounted for 90% of the total potential CO2 eq future emissions. Mangrove loss has been slowing, and global emissions could be more than halved if reduced loss rates remain in the future. Notably, the location of global emission hotspots was consistent with every dataset used to calculate deforestation rates or with alternative assumptions about carbon storage and emissions. Our results indicate the regions in need of policy actions to address emissions arising from mangrove loss and the drivers that could be managed to prevent them.

64 citations

Journal ArticleDOI
TL;DR: The habitat and foraging requirements of mangrove-bird functional groups are reviewed to understand how bird use of man Groves facilitates biological connectivity in coastal ecosystem mosaics, and how that connectivity adds to the diversity and complexity of ecological processes in mangroves ecosystems.
Abstract: Considerable advances in understanding of biological connectivity have flowed from studies of fish-facilitated connectivity within the coastal ecosystem mosaic. However, there are limits to the information that fish can provide on connectivity. Mangrove-bird communities have the potential to connect coastal habitats in different ways and at different scales than fish, so incorporation of these links into our models of coastal ecosystem mosaics affords the opportunity to greatly increase the breadth of our understanding. We review the habitat and foraging requirements of mangrove-bird functional groups to understand how bird use of mangroves facilitates biological connectivity in coastal ecosystem mosaics, and how that connectivity adds to the diversity and complexity of ecological processes in mangrove ecosystems. Avian biological connectivity is primarily characterized by foraging behavior and habitat/resource requirements. Therefore, the consequence of bird links for coastal ecosystem functioning largely depends on patterns of habitat use and foraging, and potentially influences nutrient cycling, top–down control and genetic information linkage. Habitats that experience concentrated bird guano deposition have high levels of nitrogen and phosphorus, placing particular importance on the consequences of avian nutrient translocation and subsidization for coastal ecosystem functioning. High mobility allows mangrove-bird communities to link mangrove forests to other mangrove, terrestrial and marine-pelagic systems. Therefore, the spatial scale of coastal connectivity facilitated by birds is substantially more extensive than fish-facilitated connectivity. In particular, migratory birds link habitats at regional, continental and inter-continental scales as they travel among seasonally available feeding areas from breeding grounds to non-breeding grounds; scales at which there are few fish equivalents. Knowledge of the nature and patterns of fish connectivity have contributed to shifting the initial, historical perception of mangrove-ecosystem functioning from that of a simple system based on nutrient and energy retention, to a view that includes fish-facilitated energy export. In a similar way, understanding the nature and implications of mangrove connectivity through bird movements and migrations affords new possibilities for revising our view of the extent of functional links between mangroves and other ecosystems.

50 citations

Journal ArticleDOI
TL;DR: In this article, the outcomes of activities in three coastal wetland complexes positioned along the catchments of the Great Barrier Reef (GBR) lagoon, Australia, that have been subjected to restoration investment over a number of decades are assessed.
Abstract: Managers are moving towards implementing large-scale coastal ecosystem restoration projects, however, many fail to achieve desired outcomes. Among the key reasons for this are a lack of integration with a whole-of-catchment approach, the scale of the project (temporal, spatial), the requirement for on-going costs for maintenance, lack of clear objectives, a focus on threats rather than services/values, funding cycles, engagement or change in stakeholders, and prioritization of project sites. Here we critically assess the outcomes of activities in three coastal wetland complexes positioned along the catchments of the Great Barrier Reef (GBR) lagoon, Australia, that have been subjected to restoration investment over a number of decades. Each floodplain has been modified by intensive agricultural production, heavy industry and mining infrastructure, urban/peri urban expansion, aquaculture development and infrastructure expansion. Most development has occurred in low-lying coastal floodplains, resulting in major hydrological modifications to the landscape. This has left the floodplain wetlands in a degraded and hydrologically modified state, with poor water quality (hypoxic, eutrophication, sedimentation, and persistent turbidity), loss of habitat, and disconnected because of flow hydraulic barriers, excessive aquatic plant growth, or establishment of invasive species. Successful GBR wetland ecosystem restoration and management must first include an understanding of what constitutes ‘success' and be underpinned by understanding of complex cause and effect pathways, with a focus on management of services and values. This approach should recognize these wetlands are still assets in a modified landscape. Suitable, long term, scientific knowledge is necessary to provide government and private companies with the confidence and comfort that their investment delivers dividend (environmental) returns.

48 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This is the first 30 m resolution global maps of the drivers of mangrove loss from 2000 to 2016, capturing both human‐driven and natural stressors, and it is estimated that 62% of global losses between 2000 and 2016 resulted from land‐use change, primarily through conversion to aquaculture and agriculture.
Abstract: Global mangrove loss has been attributed primarily to human activity. Anthropogenic loss hotspots across Southeast Asia and around the world have characterized the ecosystem as highly threatened, though natural processes such as erosion can also play a significant role in forest vulnerability. However, the extent of human and natural threats has not been fully quantified at the global scale. Here, using a Random Forest-based analysis of over one million Landsat images, we present the first 30 m resolution global maps of the drivers of mangrove loss from 2000 to 2016, capturing both human-driven and natural stressors. We estimate that 62% of global losses between 2000 and 2016 resulted from land-use change, primarily through conversion to aquaculture and agriculture. Up to 80% of these human-driven losses occurred within six Southeast Asian nations, reflecting the regional emphasis on enhancing aquaculture for export to support economic development. Both anthropogenic and natural losses declined between 2000 and 2016, though slower declines in natural loss caused an increase in their relative contribution to total global loss area. We attribute the decline in anthropogenic losses to the regionally dependent combination of increased emphasis on conservation efforts and a lack of remaining mangroves viable for conversion. While efforts to restore and protect mangroves appear to be effective over decadal timescales, the emergence of natural drivers of loss presents an immediate challenge for coastal adaptation. We anticipate that our results will inform decision-making within conservation and restoration initiatives by providing a locally relevant understanding of the causes of mangrove loss.

333 citations

11 Sep 2013
TL;DR: In this paper, the authors quantified the economic, social, and ecological value and magnitude of ecosystem services provided by mussels, across species, habitats, and environmental conditions, and scaled up to whole watersheds.
Abstract: Ecosystem services are the benefits that humans derive from ecosystems. Freshwater mussels perform many important functions in aquatic ecosystems, which can in turn be framed as the ecosystem services that they contribute to or provide. These include supporting services such as nutrient recycling and storage, structural habitat, substrate and food web modification, and use as environmental monitors; regulating services such as water purification (biofiltration); and provisioning and cultural services including use as a food source, as tools and jewelry, and for spiritual enhancement. Mussel-provided ecosystem services are declining because of large declines in mussel abundance. Mussel propagation could be used to restore populations of common mussel species and their ecosystem services. We need much more quantification of the economic, social, and ecological value and magnitude of ecosystem services provided by mussels, across species, habitats, and environmental conditions, and scaled up to whole watersheds. In addition, we need tools that will allow us to value mussel ecosystem services in a way that is understandable to both the public and to policy makers.

243 citations

Journal ArticleDOI
TL;DR: In this article, the influence of predators on carbon accumulation and preservation in vegetated coastal habitats (that is, salt marshes, seagrass meadows and mangroves) is poorly understood.
Abstract: Predators continue to be harvested unsustainably throughout most of the Earth's ecosystems. Recent research demonstrates that the functional loss of predators could have far-reaching consequences on carbon cycling and, by implication, our ability to ameliorate climate change impacts. Yet the influence of predators on carbon accumulation and preservation in vegetated coastal habitats (that is, salt marshes, seagrass meadows and mangroves) is poorly understood, despite these being some of the Earth's most vulnerable and carbon-rich ecosystems. Here we discuss potential pathways by which trophic downgrading affects carbon capture, accumulation and preservation in vegetated coastal habitats. We identify an urgent need for further research on the influence of predators on carbon cycling in vegetated coastal habitats, and ultimately the role that these systems play in climate change mitigation. There is, however, sufficient evidence to suggest that intact predator populations are critical to maintaining or growing reserves of 'blue carbon' (carbon stored in coastal or marine ecosystems), and policy and management need to be improved to reflect these realities.

178 citations

DOI
01 Nov 2021
TL;DR: In this article, the authors examined the potential for blue carbon ecosystems to act as carbon sinks and the opportunities to protect or restore ecosystems for this function, and the global potential of blue carbon ecosystem protection and restoration in climate change mitigation, through carbon sequestration and co-benefit production.
Abstract: Blue carbon ecosystems (BCEs), including mangrove forests, seagrass meadows and tidal marshes, store carbon and provide co-benefits such as coastal protection and fisheries enhancement. Blue carbon sequestration has therefore been suggested as a natural climate solution. In this Review, we examine the potential for BCEs to act as carbon sinks and the opportunities to protect or restore ecosystems for this function. Globally, BCEs are calculated to store >30,000 Tg C across ~185 million ha, with their conservation potentially avoiding emissions of 304 (141–466) Tg carbon dioxide equivalent (CO2e) per year. Potential BCE restoration has been estimated in the range of 0.2–3.2 million ha for tidal marshes, 8.3–25.4 million ha for seagrasses and 9–13 million ha for mangroves, which could draw down an additional 841 (621–1,064) Tg CO2e per year by 2030, collectively amounting to ~3% of global emissions (based on 2019 and 2020 global annual fossil fuel emissions). Mangrove protection and/or restoration could provide the greatest carbon-related benefits, but better understanding of other BCEs is needed. BCE destruction is unlikely to stop fully, and not all losses can be restored. However, engineering and planning for coastal protection offer opportunities for protection and restoration, especially through valuing co-benefits. BCE prioritization is potentially a cost-effective and scalable natural climate solution, but there are still barriers to overcome before blue carbon project adoption will become widespread. Mangroves, tidal marshes and seagrass meadows have historically been lost or degraded, threatening their ability to store carbon and provide ecosystem services. This Review details the global potential of blue carbon ecosystem protection and restoration in climate change mitigation, through carbon sequestration and co-benefit production.

143 citations

Journal ArticleDOI
TL;DR: Results from a unique and very successful seagrass restoration project serve as a blueprint for restoring and maintaining healthy ecosystems to safeguard multiple benefits, including co-benefits that may emerge as management priorities over time.
Abstract: There have been increasing attempts to reverse habitat degradation through active restoration, but few large-scale successes are reported to guide these efforts. Here, we report outcomes from a unique and very successful seagrass restoration project: Since 1999, over 70 million seeds of a marine angiosperm, eelgrass (Zostera marina), have been broadcast into mid-western Atlantic coastal lagoons, leading to recovery of 3612 ha of seagrass. Well-developed meadows now foster productive and diverse animal communities, sequester substantial stocks of carbon and nitrogen, and have prompted a parallel restoration for bay scallops (Argopecten irradians) Restored ecosystem services are approaching historic levels, but we also note that managers value services differently today than they did nine decades ago, emphasizing regulating in addition to provisioning services. Thus, this study serves as a blueprint for restoring and maintaining healthy ecosystems to safeguard multiple benefits, including co-benefits that may emerge as management priorities over time.

102 citations