scispace - formally typeset
Search or ask a question
Author

Christina R. Riesselman

Bio: Christina R. Riesselman is an academic researcher from University of Otago. The author has contributed to research in topics: Ice sheet & Glacial period. The author has an hindex of 18, co-authored 42 publications receiving 2251 citations. Previous affiliations of Christina R. Riesselman include Stanford University & United States Geological Survey.

Papers
More filters
Journal ArticleDOI
19 Mar 2009-Nature
TL;DR: A marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf is presented and well-dated, ∼40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth’s axial tilt (obliquity) during the Pliocene are demonstrated.
Abstract: Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch ( approximately 5-3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, approximately 40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to approximately 3 degrees C warmer than today and atmospheric CO(2) concentration was as high as approximately 400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO(2).

605 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that CO2 concentrations affect the physiology, growth and species composition of phytoplankton assemblages in the Ross Sea, Antarctica.
Abstract: [1] The Southern Ocean exerts a strong impact on marine biogeochemical cycles and global air-sea CO2 fluxes. Over the coming century, large increases in surface ocean CO2 levels, combined with increased upper water column temperatures and stratification, are expected to diminish Southern Ocean CO2 uptake. These effects could be significantly modulated by concomitant CO2-dependent changes in the region's biological carbon pump. Here we show that CO2 concentrations affect the physiology, growth and species composition of phytoplankton assemblages in the Ross Sea, Antarctica. Field results from in situ sampling and ship-board incubation experiments demonstrate that inorganic carbon uptake, steady-state productivity and diatom species composition are sensitive to CO2 concentrations ranging from 100 to 800 ppm. Elevated CO2 led to a measurable increase in phytoplankton productivity, promoting the growth of larger chain-forming diatoms. Our results suggest that CO2 concentrations can influence biological carbon cycling in the Southern Ocean, thereby creating potential climate feedbacks.

288 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new data from Pliocene marine sediments recovered offshore of Adelie Land, East Antarctica, that reveal dynamic behaviour of the East Antarctic ice sheet in the vicinity of the low-lying Wilkes Subglacial Basin during times of past climatic warmth.
Abstract: Warm intervals within the Pliocene epoch (5.33–2.58 million years ago) were characterized by global temperatures comparable to those predicted for the end of this century1 and atmospheric CO2 concentrations similar to today2, 3, 4. Estimates for global sea level highstands during these times5 imply possible retreat of the East Antarctic ice sheet, but ice-proximal evidence from the Antarctic margin is scarce. Here we present new data from Pliocene marine sediments recovered offshore of Adelie Land, East Antarctica, that reveal dynamic behaviour of the East Antarctic ice sheet in the vicinity of the low-lying Wilkes Subglacial Basin during times of past climatic warmth. Sedimentary sequences deposited between 5.3 and 3.3 million years ago indicate increases in Southern Ocean surface water productivity, associated with elevated circum-Antarctic temperatures. The geochemical provenance of detrital material deposited during these warm intervals suggests active erosion of continental bedrock from within the Wilkes Subglacial Basin, an area today buried beneath the East Antarctic ice sheet. We interpret this erosion to be associated with retreat of the ice sheet margin several hundreds of kilometres inland and conclude that the East Antarctic ice sheet was sensitive to climatic warmth during the Pliocene.

245 citations

Journal ArticleDOI
TL;DR: In this paper, sea-surface-temperature proxy data for a period of natural climate warming during the Pliocene epoch were used to show how palaeoclimatic data can help ground truth numerical models, increasing the confidence in these same models for projecting future climate.
Abstract: Sea-surface-temperature proxy data for a period of natural climate warming during the Pliocene are used in this study to show how palaeoclimatic data can help ‘ground truth’ numerical models, increasing the confidence in these same models for projecting future climate.

193 citations

Journal ArticleDOI
TL;DR: Evidence for a major expansion of an ice sheet in the Ross Sea that began at ∼3.3 Ma, followed by a coastal sea surface temperature cooling of ∼2.5 °C, indicates an additional role played by southern high-latitude cooling during development of the bipolar world.
Abstract: The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ∼3.3 Ma, followed by a coastal sea surface temperature cooling of ∼2.5 °C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world.

192 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
18 Jun 2010-Science
TL;DR: Although there is considerable uncertainty about the spatial and temporal details, climate change is clearly and fundamentally altering ocean ecosystems and will continue to create enormous challenges and costs for societies worldwide, particularly those in developing countries.
Abstract: Marine ecosystems are centrally important to the biology of the planet, yet a comprehensive understanding of how anthropogenic climate change is affecting them has been poorly developed. Recent studies indicate that rapidly rising greenhouse gas concentrations are driving ocean systems toward conditions not seen for millions of years, with an associated risk of fundamental and irreversible ecological transformation. The impacts of anthropogenic climate change so far include decreased ocean productivity, altered food web dynamics, reduced abundance of habitat-forming species, shifting species distributions, and a greater incidence of disease. Although there is considerable uncertainty about the spatial and temporal details, climate change is clearly and fundamentally altering ocean ecosystems. Further change will continue to create enormous challenges and costs for societies worldwide, particularly those in developing countries.

2,408 citations

Journal ArticleDOI
31 Mar 2016-Nature
TL;DR: A model coupling ice sheet and climate dynamics—including previously underappreciated processes linking atmospheric warming with hydrofracturing of buttressing ice shelves and structural collapse of marine-terminating ice cliffs—is calibrated against Pliocene and Last Interglacial sea-level estimates and applied to future greenhouse gas emission scenarios.
Abstract: Polar temperatures over the last several million years have, at times, been slightly warmer than today, yet global mean sea level has been 6-9 metres higher as recently as the Last Interglacial (130,000 to 115,000 years ago) and possibly higher during the Pliocene epoch (about three million years ago). In both cases the Antarctic ice sheet has been implicated as the primary contributor, hinting at its future vulnerability. Here we use a model coupling ice sheet and climate dynamics-including previously underappreciated processes linking atmospheric warming with hydrofracturing of buttressing ice shelves and structural collapse of marine-terminating ice cliffs-that is calibrated against Pliocene and Last Interglacial sea-level estimates and applied to future greenhouse gas emission scenarios. Antarctica has the potential to contribute more than a metre of sea-level rise by 2100 and more than 15 metres by 2500, if emissions continue unabated. In this case atmospheric warming will soon become the dominant driver of ice loss, but prolonged ocean warming will delay its recovery for thousands of years.

1,433 citations

Journal ArticleDOI
19 Mar 2009-Nature
TL;DR: A combined ice sheet/ice shelf model capable of high-resolution nesting with a new treatment of grounding-line dynamics and ice-shelf buttressing is used to simulate Antarctic ice sheet variations over the past five million years, indicating a long-term trend from more frequently collapsed to more glaciated states.
Abstract: Changes in Earth's orbit are known to influence climate shifts from cold glacials to warm interglacials. How the vast West Antarctic ice sheet responds to these fluctuations is uncertain but, because its collapse could raise sea levels by about 5 metres, of great interest. Naish et al. have analysed the AND-1B ocean sediment core, extracted from beneath the Ross Ice Shelf as part of the ANDRILL drilling project, and find evidence that the ice sheet collapsed periodically during the early Pliocene (3-5 million years ago), when atmospheric CO2 levels were similar to, or slightly higher than today's. The pattern of collapse suggests an influence of approximately 40,000-year cycles in the tilt of Earth's rotational axis (obliquity). Also in this issue of Nature, in a numerical modelling study focused on the past 5 million years in Antarctica, David Pollard and Robert DeConto combine ice sheet (land-supported) and ice shelf (water-supported) modelling approaches to simulate the movement of the grounding line — the border between land and sea ice. Their results show that over the past 5 million years, the West Antarctic ice sheet transitioned between full, intermediate, and collapsed states in just a few thousand years. This means that the ice sheet is likely to disintegrate if ocean temperatures in the area rise by 5 C. If the West Antarctic Ice Sheet (WAIS) melted, sea levels would rise by about 5 m; such changes are thought to have occurred in the past but could not be simulated by models. Pollard and DeConto combine ice-sheet with ice-shelf modelling, and show that over the past 5 million years, the WAIS transitioned among full, intermediate, and collapsed states in only a few thousand years, suggesting possible disintegration of the WAIS if ocean temperatures in the area rise by 5 °C. The West Antarctic ice sheet (WAIS), with ice volume equivalent to ∼5 m of sea level1, has long been considered capable of past and future catastrophic collapse2,3,4. Today, the ice sheet is fringed by vulnerable floating ice shelves that buttress the fast flow of inland ice streams. Grounding lines are several hundred metres below sea level and the bed deepens upstream, raising the prospect of runaway retreat3,5. Projections of future WAIS behaviour have been hampered by limited understanding of past variations and their underlying forcing mechanisms6,7. Its variation since the Last Glacial Maximum is best known, with grounding lines advancing to the continental-shelf edges around ∼15 kyr ago before retreating to near-modern locations by ∼3 kyr ago8. Prior collapses during the warmth of the early Pliocene epoch9 and some Pleistocene interglacials have been suggested indirectly from records of sea level and deep-sea-core isotopes, and by the discovery of open-ocean diatoms in subglacial sediments10. Until now11, however, little direct evidence of such behaviour has been available. Here we use a combined ice sheet/ice shelf model12 capable of high-resolution nesting with a new treatment of grounding-line dynamics and ice-shelf buttressing5 to simulate Antarctic ice sheet variations over the past five million years. Modelled WAIS variations range from full glacial extents with grounding lines near the continental shelf break, intermediate states similar to modern, and brief but dramatic retreats, leaving only small, isolated ice caps on West Antarctic islands. Transitions between glacial, intermediate and collapsed states are relatively rapid, taking one to several thousand years. Our simulation is in good agreement with a new sediment record (ANDRILL AND-1B) recovered from the western Ross Sea11, indicating a long-term trend from more frequently collapsed to more glaciated states, dominant 40-kyr cyclicity in the Pliocene, and major retreats at marine isotope stage 31 (∼1.07 Myr ago) and other super-interglacials.

931 citations

Journal ArticleDOI
TL;DR: It is suggested that cell size and elemental stoichiometry are promising ecophysiological traits for modelling and tracking changes in phytoplankton community structure in response to climate change.
Abstract: Global increases in atmospheric CO2 and temperature are associated with changes in ocean chemistry and circulation, altering light and nutrient regimes. Resulting changes in phytoplankton community structure are expected to have a cascading effect on primary and export production, food web dynamics and the structure of the marine food web as well the biogeochemical cycling of carbon and bio-limiting elements in the sea. A review of current literature indicates cell size and elemental stoichiometry often respond predictably to abiotic conditions and follow biophysical rules that link environmental conditions to growth rates, and growth rates to food web interactions, and consequently to the biogeochemical cycling of elements. This suggests that cell size and elemental stoichiometry are promising ecophysiological traits for modelling and tracking changes in phytoplankton community structure in response to climate change. In turn, these changes are expected to have further impacts on phytoplankton community structure through as yet poorly understood secondary processes associated with trophic dynamics.

919 citations