scispace - formally typeset
Search or ask a question
Author

Christina Streli

Other affiliations: University of Girona
Bio: Christina Streli is an academic researcher from Vienna University of Technology. The author has contributed to research in topics: Synchrotron radiation & X-ray fluorescence. The author has an hindex of 27, co-authored 194 publications receiving 3186 citations. Previous affiliations of Christina Streli include University of Girona.


Papers
More filters
Journal ArticleDOI
10 Feb 2005-Nature
TL;DR: This work describes the emission of highly collimated, spatially coherent X-rays, at a wavelength of about 1 nanometre and at photon energies extending to 1.3 kiloelectronvolts, from atoms that have been ionized by a 5-femtosecond laser pulse.
Abstract: Generating X-rays that have the properties of laser light has been a long-standing goal for experimental science. Here we describe the emission of highly collimated, spatially coherent X-rays, at a wavelength of about 1 nanometre and at photon energies extending to 1.3 kiloelectronvolts, from atoms that have been ionized by a 5-femtosecond laser pulse. This means that a laboratory source of laser-like, kiloelectronvolt X-rays, which will operate on timescales relevant to many chemical, biological and materials problems, is now within reach.

282 citations

Journal ArticleDOI
TL;DR: In this paper, the single-atom quantum theory of high-order harmonic generation combined with Maxwell's wave equation provides a satisfactory account for the experimental observations, and the sub-10-fs laser pulse duration was found to be crucial for generating radiation with the highest photon energies at the low ( $l 0.5\mathrm{mJ}$) pump energy levels used in the experiments.
Abstract: Helium atoms ionized by intense few-cycle light pulses in the barrier suppression regime emit spatially coherent extreme ultraviolet continuum extending to photon energies greater than ${E}_{\mathrm{ph}}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}0.5\mathrm{keV}$ ( $\ensuremath{\lambda}l2.5\mathrm{nm}$). The high-energy end of the continuum in the range of ${E}_{\mathrm{ph}}\ensuremath{\ge}0.2\mathrm{keV}$ ( $\ensuremath{\lambda}\ensuremath{\le}6\mathrm{nm}$) was characterized spectrally over a considerable dynamic range using energy-dispersive detection. The sub-10-fs laser pulse duration was found to be crucial for generating radiation with the highest photon energies at the low ( $l0.5\mathrm{mJ}$) pump energy levels used in the experiments. The single-atom quantum theory of high-order harmonic generation combined with Maxwell's wave equation provides a satisfactory account for the experimental observations.

153 citations

Journal ArticleDOI
01 Nov 2013-Bone
TL;DR: It is shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation.

150 citations

Journal ArticleDOI
TL;DR: Analysis of bone mineralization density distribution (BMDD), strontium (Sr) concentration, collagen cross‐link ratio, and indentation modulus provide evidence that the investigated bone quality determinants at tissue level were preserved in postmenopausal osteoporotic women after 3‐year treatment with SrR per day plus calcium and vitamin D.
Abstract: Strontium ranelate (SrR) is a relatively new treatment for osteoporosis. In this study we investigated its potential impact on human bone material quality in transiliac bone biopsies from postmenopausal osteoporotic women treated 3 years with calcium and vitamin D plus either 2 g SrR per day or placebo. Bone mineralization density distribution (BMDD), strontium (Sr) concentration, collagen cross-link ratio, and indentation modulus were analyzed by quantitative backscattered electron imaging, electron-induced X-ray fluorescence analysis, synchrotron radiation induced micro X-ray fluorescence elemental mapping, Fourier transform infrared imaging, and nanoindentation, respectively. The BMDD of SrR-treated patients was shifted to higher atomic numbers (Z(mean) +1.5%, p < .05 versus placebo). We observed Sr being preferentially incorporated in bone packets formed during SrR treatment up to 6% atom fraction [Sr/(Sr + Ca)] depending on the SrR serum levels of the individuals (correlation r = 0.84, p = .018). Collagen cross-link ratio was preserved in SR-treated bone. The indentation modulus was significantly decreased in younger versus older bone packets for both placebo- (-20.5%, p < .0001) and SrR-treated individuals (-24.3%, p < .001), whereas no differences were found between the treatment groups. In conclusion, our findings indicate that after SrR treatment, Sr is heterogeneously distributed in bone and preferentially present in bone packets formed during treatment. The effect of SrR on BMDD seems to be due mainly to the uptake of Sr and not to changes in bone calcium content. Taken together, these data provide evidence that the investigated bone quality determinants at tissue level were preserved in postmenopausal osteoporotic women after 3-year treatment with 2 g SrR per day plus calcium and vitamin D.

88 citations

Journal ArticleDOI
TL;DR: A review of advances in the XRF group of techniques published approximately between April 2015 and March 2016 can be found in this paper, where a bench top TXRF spectrometer for the measurement of the elements from carbon to uranium is described that offers achievable detection limits that range from ng g−1 to μg g −1.
Abstract: This review describes advances in the XRF group of techniques published approximately between April 2015 and March 2016. Fundamental contributions in the instrumentation sections include the development of synchrotron radiation sources, semiconductor design technology and evaluating the quality of in situ hand-held XRF results. A bench top TXRF spectrometer for the measurement of the elements from carbon to uranium is described that offers achievable detection limits that range from ng g−1 to μg g−1. The applications sections aim to give a representative overview of the range of applications that use XRF techniques with an emphasis on papers that describe technical or application innovation. Sample size investigated ranged from the planet Mercury down to nano-gram quantities of cement secreted by settlement stage barnacle larvae. The archaeological and cultural heritage section this year includes an authentic report on the use of cannabis as a filler in ancient lime plaster and heartening news that the construction of an underground parking garage in the centre of Zurich (Switzerland) unearthed the remains of seven Neolithic settlements from the 4th and 3rd millennium BC. The X-ray excitation of iron present in ancient iron-gall inks was presented as a step toward the non-invasive reading of fragile and/or unopenable documents. Feedback from readers of this review is most welcome and the review coordinator may be contacted using the email address provided.

81 citations


Cited by
More filters
01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discuss the impact of these pulses on high-field physics.
Abstract: The rise time of intense radiation determines the maximum field strength atoms can be exposed to before their polarizability dramatically drops due to the detachment of an outer electron. Recent progress in ultrafast optics has allowed the generation of ultraintense light pulses comprising merely a few field oscillation cycles. The arising intensity gradient allows electrons to survive in their bound atomic state up to external field strengths many times higher than the binding Coulomb field and gives rise to ionization rates comparable to the light frequency, resulting in a significant extension of the frontiers of nonlinear optics and (nonrelativistic) high-field physics. Implications include the generation of coherent harmonic radiation up to kiloelectronvolt photon energies and control of the atomic dipole moment on a subfemtosecond $(1{\mathrm{f}\mathrm{s}=10}^{\mathrm{\ensuremath{-}}15}\mathrm{}\mathrm{s})$ time scale. This review presents the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discusses the impact of these pulses on high-field physics. Particular emphasis is placed on high-order harmonic emission and single subfemtosecond extreme ultraviolet/x-ray pulse generation. These as well as other strong-field processes are governed directly by the electric-field evolution, and hence their full control requires access to the (absolute) phase of the light carrier. We shall discuss routes to its determination and control, which will, for the first time, allow access to the electromagnetic fields in light waves and control of high-field interactions with never-before-achieved precision.

2,547 citations

Journal Article
TL;DR: In this article, a categorization of weathering characteristics into six stages, recognizable on descriptive criteria, provides a basis for investigation of the weathering rates and processes of recent mammals in the Amboseli Basin.
Abstract: Bones of recent mammals in the Amboseli Basin, southern Kenya, exhibit distinctive weathering characteristics that can be related to the time since death and to the local conditions of temperature, humidity and soil chemistry. A categorization of weathering characteristics into six stages, recognizable on descriptive criteria, provides a basis for investigation of weathering rates and processes. The time necessary to achieve each successive weathering stage has been calibrated using known-age carcasses. Most bones decompose beyond recognition in 10 to 15 yr. Bones of animals under 100 kg and juveniles appear to weather more rapidly than bones of large animals or adults. Small-scale rather than widespread environmental factors seem to have greatest influence on weathering characteristics and rates. Bone weathering is potentially valuable as evidence for the period of time represented in recent or fossil bone assemblages, in- cluding those on archeological sites, and may also be an important tool in censusing populations of animals in modern ecosystems.

2,035 citations

Proceedings Article
Ferenc Krausz1
01 Aug 2007
TL;DR: In this paper, an attosecond "oscilloscope" was used to visualize the oscillating electric field of visible light with an oscillator and probe multi-electron dynamics in atoms, molecules and solids.
Abstract: Summary form only given. Fundamental processes in atoms, molecules, as well as condensed matter are triggered or mediated by the motion of electrons inside or between atoms. Electronic dynamics on atomic length scales tends to unfold within tens to thousands of attoseconds (1 attosecond [as] = 10-18 s). Recent breakthroughs in laser science are now opening the door to watching and controlling these hitherto inaccessible microscopic dynamics. The key to accessing the attosecond time domain is the control of the electric field of (visible) light, which varies its strength and direction within less than a femtosecond (1 femtosecond = 1000 attoseconds). Atoms exposed to a few oscillations cycles of intense laser light are able to emit a single extreme ultraviolet (XUV) burst lasting less than one femtosecond. Full control of the evolution of the electromagnetic field in laser pulses comprising a few wave cycles have recently allowed the reproducible generation and measurement of isolated sub-femtosecond XUV pulses, demonstrating the control of microscopic processes (electron motion and photon emission) on an attosecond time scale. These tools have enabled us to visualize the oscillating electric field of visible light with an attosecond "oscilloscope", to control single-electron and probe multi-electron dynamics in atoms, molecules and solids. Recent experiments hold promise for the development of an attosecond X-ray source, which may pave the way towards 4D electron imaging with sub-atomic resolution in space and time.

1,618 citations

Journal ArticleDOI
TL;DR: In this paper, the SPring-8 Angstrom Compact Free-Electron Laser (CFEL) was used for sub-angstrom fundamental-wavelength lasing at the Tokyo National Museum.
Abstract: Researchers report sub-angstrom fundamental-wavelength lasing at the SPring-8 Angstrom Compact Free-Electron Laser in Japan. The output has a maximum power of more than 10 GW, a pulse duration of 10−14 s and a lasing wavelength of 0.634 A.

1,467 citations