scispace - formally typeset
Search or ask a question
Author

Christine De Mol

Bio: Christine De Mol is an academic researcher from Université libre de Bruxelles. The author has contributed to research in topics: Inverse problem & Feature selection. The author has an hindex of 19, co-authored 51 publications receiving 9839 citations. Previous affiliations of Christine De Mol include Vrije Universiteit Brussel & Free University of Brussels.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proved that replacing the usual quadratic regularizing penalties by weighted 𝓁p‐penalized penalties on the coefficients of such expansions, with 1 ≤ p ≤ 2, still regularizes the problem.
Abstract: We consider linear inverse problems where the solution is assumed to have a sparse expansion on an arbitrary preassigned orthonormal basis. We prove that replacing the usual quadratic regularizing penalties by weighted p-penalties on the coefficients of such expansions, with 1 ≤ p ≤ 2, still regularizes the problem. Use of such p-penalized problems with p < 2 is often advocated when one expects the underlying ideal noiseless solution to have a sparse expansion with respect to the basis under consideration. To compute the corresponding regularized solutions, we analyze an iterative algorithm that amounts to a Landweber iteration with thresholding (or nonlinear shrinkage) applied at each iteration step. We prove that this algorithm converges in norm. © 2004 Wiley Periodicals, Inc.

4,339 citations

Posted Content
Abstract: We consider linear inverse problems where the solution is assumed to have a sparse expansion on an arbitrary pre-assigned orthonormal basis. We prove that replacing the usual quadratic regularizing penalties by weighted l^p-penalties on the coefficients of such expansions, with 1 < or = p < or =2, still regularizes the problem. If p < 2, regularized solutions of such l^p-penalized problems will have sparser expansions, with respect to the basis under consideration. To compute the corresponding regularized solutions we propose an iterative algorithm that amounts to a Landweber iteration with thresholding (or nonlinear shrinkage) applied at each iteration step. We prove that this algorithm converges in norm. We also review some potential applications of this method.

3,640 citations

Journal ArticleDOI
TL;DR: This work proposes to add to the objective function a penalty proportional to the sum of the absolute values of the portfolio weights, which regularizes (stabilizes) the optimization problem, encourages sparse portfolios, and allows accounting for transaction costs.
Abstract: We consider the problem of portfolio selection within the classical Markowitz mean-variance framework, reformulated as a constrained least-squares regression problem. We propose to add to the objective function a penalty proportional to the sum of the absolute values of the portfolio weights. This penalty regularizes (stabilizes) the optimization problem, encourages sparse portfolios (i.e., portfolios with only few active positions), and allows accounting for transaction costs. Our approach recovers as special cases the no-short-positions portfolios, but does allow for short positions in limited number. We implement this methodology on two benchmark data sets constructed by Fama and French. Using only a modest amount of training data, we construct portfolios whose out-of-sample performance, as measured by Sharpe ratio, is consistently and significantly better than that of the naive evenly weighted portfolio.

532 citations

Posted Content
TL;DR: In this article, the authors consider Bayesian regression with normal and double-exponential priors as forecasting methods based on large panels of time series and show that these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range of prior choices.
Abstract: This paper considers Bayesian regression with normal and double-exponential priors as forecasting methods based on large panels of time series. We show that, empirically, these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range of prior choices. Moreover, we study the asymptotic properties of the Bayesian regression under Gaussian prior under the assumption that data are quasi collinear to establish a criterion for setting parameters in a large cross-section.

488 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider Bayesian regression with normal and double-exponential priors as forecasting methods based on large panels of time series and show that these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range of prior choices.

372 citations


Cited by
More filters
Book
23 May 2011
TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.
Abstract: Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. In this review, we argue that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas–Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for l1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, we discuss applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. We also discuss general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.

17,433 citations

Journal ArticleDOI
TL;DR: In comparative timings, the new algorithms are considerably faster than competing methods and can handle large problems and can also deal efficiently with sparse features.
Abstract: We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, two-class logistic regression, and multinomial regression problems while the penalties include l(1) (the lasso), l(2) (ridge regression) and mixtures of the two (the elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods.

13,656 citations

Journal ArticleDOI
TL;DR: A new fast iterative shrinkage-thresholding algorithm (FISTA) which preserves the computational simplicity of ISTA but with a global rate of convergence which is proven to be significantly better, both theoretically and practically.
Abstract: We consider the class of iterative shrinkage-thresholding algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods, which can be viewed as an extension of the classical gradient algorithm, is attractive due to its simplicity and thus is adequate for solving large-scale problems even with dense matrix data. However, such methods are also known to converge quite slowly. In this paper we present a new fast iterative shrinkage-thresholding algorithm (FISTA) which preserves the computational simplicity of ISTA but with a global rate of convergence which is proven to be significantly better, both theoretically and practically. Initial promising numerical results for wavelet-based image deblurring demonstrate the capabilities of FISTA which is shown to be faster than ISTA by several orders of magnitude.

11,413 citations

Journal ArticleDOI
TL;DR: It is demonstrated theoretically and empirically that a greedy algorithm called orthogonal matching pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal.
Abstract: This paper demonstrates theoretically and empirically that a greedy algorithm called orthogonal matching pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal. This is a massive improvement over previous results, which require O(m2) measurements. The new results for OMP are comparable with recent results for another approach called basis pursuit (BP). In some settings, the OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal recovery problems.

8,604 citations

01 Aug 2007
TL;DR: In this paper, a greedy algorithm called Orthogonal Matching Pursuit (OMP) was proposed to recover a signal with m nonzero entries in dimension 1 given O(m n d) random linear measurements of that signal.
Abstract: This report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(mln d) random linear measurements of that signal. This is a massive improvement over previous results, which require O(m2) measurements. The new results for OMP are comparable with recent results for another approach called Basis Pursuit (BP). In some settings, the OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal recovery problems.

7,124 citations