scispace - formally typeset
Search or ask a question
Author

Christine DeMarino

Bio: Christine DeMarino is an academic researcher from North Carolina State University. The author has contributed to research in topics: Supernova & Neutron star. The author has an hindex of 2, co-authored 2 publications receiving 656 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the stability of standing, spherical accretion shocks is examined in core-collapse supernovae, star formation, and accreting white dwarfs and neutron stars.
Abstract: We examine the stability of standing, spherical accretion shocks. Accretion shocks arise in core-collapse supernovae (the focus of this paper), star formation, and accreting white dwarfs and neutron stars. We present a simple analytic model and use time-dependent hydrodynamics simulations to show that this solution is stable to radial perturbations. In two dimensions we show that small perturbations to a spherical shock front can lead to rapid growth of turbulence behind the shock, driven by the injection of vorticity from the now nonspherical shock. We discuss the ramifications this instability may have for the supernova mechanism.

691 citations

Journal ArticleDOI
TL;DR: In this paper, the stability of standing, spherical accretion shocks was examined and it was shown that small perturbations to a spherical shock front can lead to rapid growth of turbulence behind the shock, driven by the injection of vorticity from the non-spherical shock.
Abstract: We examine the stability of standing, spherical accretion shocks. Accretion shocks arise in core collapse supernovae (the focus of this paper), star formation, and accreting white dwarfs and neutron stars. We present a simple analytic model and use time-dependent hydrodynamics simulations to show that this solution is stable to radial perturbations. In two dimensions we show that small perturbations to a spherical shock front can lead to rapid growth of turbulence behind the shock, driven by the injection of vorticity from the now non-spherical shock. We discuss the ramifications this instability may have for the supernova mechanism.

33 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: To the best of our knowledge, there is only one application of mathematical modelling to face recognition as mentioned in this paper, and it is a face recognition problem that scarcely clamoured for attention before the computer age but, having surfaced, has attracted the attention of some fine minds.
Abstract: to be done in this area. Face recognition is a problem that scarcely clamoured for attention before the computer age but, having surfaced, has involved a wide range of techniques and has attracted the attention of some fine minds (David Mumford was a Fields Medallist in 1974). This singular application of mathematical modelling to a messy applied problem of obvious utility and importance but with no unique solution is a pretty one to share with students: perhaps, returning to the source of our opening quotation, we may invert Duncan's earlier observation, 'There is an art to find the mind's construction in the face!'.

3,015 citations

Journal ArticleDOI
TL;DR: The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of O-Ne-Mg-core and some Fe-core progenitors as mentioned in this paper.
Abstract: Supernova theory, numerical and analytic, has made remarkable progress in the past decade. This progress was made possible by more sophisticated simulation tools, especially for neutrino transport, improved microphysics, and deeper insights into the role of hydrodynamic instabilities. Violent, large-scale nonradial mass motions are generic in supernova cores. The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of O-Ne-Mg-core and some Fe-core progenitors. The characteristics of the neutrino emission from newborn neutron stars were revised, new features of the gravitational-wave signals were discovered, our notion of supernova nucleosynthesis was shattered, and our understanding of pulsar kicks and explosion asymmetries was significantly improved. But simulations also suggest that neutrino-powered explosions might not explain the most energetic supernovae and hypernovae, which seem to demand magnetorotational driving. Now that modeling is being advanced from...

971 citations

Journal ArticleDOI
Fengpeng An1, Guangpeng An, Qi An2, Vito Antonelli3  +226 moreInstitutions (55)
TL;DR: The Jiangmen Underground Neutrino Observatory (JUNO) as mentioned in this paper is a 20kton multi-purpose underground liquid scintillator detector with the determination of neutrino mass hierarchy (MH) as a primary physics goal.
Abstract: The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3–4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters ${\mathrm{sin}}^{2}{\theta }_{12}$, ${\rm{\Delta }}{m}_{21}^{2}$, and $| {\rm{\Delta }}{m}_{{ee}}^{2}| $ to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ∼5000 inverse-beta-decay events and ∼2000 all-flavor neutrino–proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations. Detection of neutrinos from all past core-collapse supernova explosions in the visible universe with JUNO would further provide valuable information on the cosmic star-formation rate and the average core-collapse neutrino energy spectrum. Antineutrinos originating from the radioactive decay of uranium and thorium in the Earth can be detected in JUNO with a rate of ∼400 events per year, significantly improving the statistics of existing geoneutrino event samples. Atmospheric neutrino events collected in JUNO can provide independent inputs for determining the MH and the octant of the ${\theta }_{23}$ mixing angle. Detection of the (7)Be and (8)B solar neutrino events at JUNO would shed new light on the solar metallicity problem and examine the transition region between the vacuum and matter dominated neutrino oscillations. Regarding light sterile neutrino topics, sterile neutrinos with ${10}^{-5}\,{{\rm{eV}}}^{2}\lt {\rm{\Delta }}{m}_{41}^{2}\lt {10}^{-2}\,{{\rm{eV}}}^{2}$ and a sufficiently large mixing angle ${\theta }_{14}$ could be identified through a precise measurement of the reactor antineutrino energy spectrum. Meanwhile, JUNO can also provide us excellent opportunities to test the eV-scale sterile neutrino hypothesis, using either the radioactive neutrino sources or a cyclotron-produced neutrino beam. The JUNO detector is also sensitive to several other beyondthe-standard-model physics. Examples include the search for proton decay via the $p\to {K}^{+}+\bar{ u }$ decay channel, search for neutrinos resulting from dark-matter annihilation in the Sun, search for violation of Lorentz invariance via the sidereal modulation of the reactor neutrino event rate, and search for the effects of non-standard interactions. The proposed construction of the JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics in a timely and cost-effective fashion. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one of the building blocks of our Universe.

807 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the prompt bounce-shock mechanism is not the driver of supernova explosions, and that the delayed neutrino-heating mechanism can produce explosions without the aid of multi-dimensional processes only if the progenitor star has an ONeMg core inside a very dilute He-core, i.e., has a mass in the 8-10 M⊙ range.

762 citations

Journal ArticleDOI
TL;DR: A review of the state-of-the-art in the field can be found in this paper, where the authors present a brief summary of the one- or multidimensional spherical or non-spherical explosion simulations available to date.

706 citations