scispace - formally typeset
Search or ask a question
Author

Christine L. Mummery

Bio: Christine L. Mummery is an academic researcher from Leiden University Medical Center. The author has contributed to research in topics: Embryonic stem cell & Stem cell. The author has an hindex of 94, co-authored 416 publications receiving 32296 citations. Previous affiliations of Christine L. Mummery include Loyola University Medical Center & University Medical Center Utrecht.


Papers
More filters
Journal ArticleDOI
27 Mar 2014-Nature
TL;DR: For example, the authors mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body.
Abstract: Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research

1,715 citations

PatentDOI
TL;DR: This is the first demonstration of induction ofcardiomyocyte differentiation in hES cells that do not undergo spontaneous cardiogenesis and provides a model for the study of human cardiomyocytes in culture and could be a step forward in the development of cardiomeocyte transplantation therapies.
Abstract: A method for inducing cardiomyocyte differentiation of a hES cell, the method comprising co-culturing the hES cell with a cell excreting at least one cardiomyocyte differentiation inducing factor or with an extracellular medium therefrom, under conditions that induce differentiation, cells and cell populations so produced, and uses of the cells.

1,243 citations

Journal ArticleDOI
Oluseun Adewumi1, Behrouz Aflatoonian2, Lars Ährlund-Richter3, Michal Amit4, Peter W. Andrews2, Gemma Beighton5, Paul Bello6, Nissim Benvenisty7, Lorraine S. Berry1, Simon Bevan, Barak Blum7, Justin Brooking8, Kevin G. Chen9, Andre Bh Choo, Gary A. Churchill, Marie Corbel10, Ivan Damjanov11, John S Draper12, Petr Dvorak13, Petr Dvorak14, Katarina Emanuelsson, Roland A. Fleck1, Angela Ford2, Karin Astrid Maria Gertow3, Karin Astrid Maria Gertow6, Marina Gertsenstein12, Paul J. Gokhale2, Rebecca S. Hamilton9, Alex Hampl14, Alex Hampl13, Lyn Healy1, Outi Hovatta3, Johan Hyllner, Marta P. Imreh3, Marta P. Imreh15, Joseph Itskovitz-Eldor4, Jamie P. Jackson2, Jackie Johnson6, Mark Jones2, Kehkooi Kee16, Benjamin L. King, Barbara B. Knowles, Majlinda Lako17, Franck Lebrin18, Barbara S. Mallon9, Daisy Manning19, Yoav Mayshar7, Ronald D.G. McKay9, Anna E. Michalska6, Milla Mikkola20, Masha Mileikovsky12, Stephen L. Minger21, Harry Moore2, Christine L. Mummery, Andras Nagy, Norio Nakatsuji22, Carmel M. O’Brien6, Steve Oh, Cia Olsson20, Timo Otonkoski20, Kye-Yoon Park9, Robert Passier, Hema Patel1, Minal Patel21, Roger A. Pedersen10, Martin F. Pera23, Marian S Piekarczyk19, Renee A. Reijo Pera16, Benjamin Reubinoff, Allan J. Robins, Janet Rossant12, Peter J. Rugg-Gunn12, Peter J. Rugg-Gunn10, Thomas C Schulz, Henrik Semb, Eric S Sherrer, Henrike Siemen16, Glyn Stacey1, Miodrag Stojkovic17, Hirofumi Suemori22, Jin P. Szatkiewicz, Tikva Turetsky, Timo Tuuri20, Steineke van den Brink, Kristina Vintersten12, Sanna Vuoristo20, Dorien Ward, Thomas A Weaver, Lesley Young1, Weidong Zhang 
TL;DR: The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide and found that despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers ofhuman embryonic stem cells.
Abstract: The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue- nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.

1,064 citations

Journal ArticleDOI
TL;DR: Evidence is provided that cardiac microRNAs, recently discovered key regulators of gene expression, contribute to the transcriptional changes observed in heart failure as well as changes in gene expression comparable to the failing heart.
Abstract: Background— Chronic heart failure is characterized by left ventricular remodeling and reactivation of a fetal gene program; the underlying mechanisms are only partly understood. Here we provide evidence that cardiac microRNAs, recently discovered key regulators of gene expression, contribute to the transcriptional changes observed in heart failure. Methods and Results— Cardiac transcriptome analyses revealed striking similarities between fetal and failing human heart tissue. Using microRNA arrays, we discovered profound alterations of microRNA expression in failing hearts. These changes closely mimicked the microRNA expression pattern observed in fetal cardiac tissue. Bioinformatic analysis demonstrated a striking concordance between regulated messenger RNA expression in heart failure and the presence of microRNA binding sites in the respective 3′ untranslated regions. Messenger RNAs upregulated in the failing heart contained preferentially binding sites for downregulated microRNAs and vice versa. Mechani...

880 citations

Journal ArticleDOI
TL;DR: It is reported that ALK5 is important for TGFbeta/ALK1 signaling; endothelial cells lacking AlK5 are deficient in TGF beta/ALK 1-induced responses and that theALK5 kinase activity is required for optimal ALK1 activation.

674 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
30 Nov 2007-Cell
TL;DR: It is demonstrated that iPS cells can be generated from adult human fibroblasts with the same four factors: Oct3/4, Sox2, Klf4, and c-Myc.

18,175 citations

Journal ArticleDOI
Jean Paul Thiery1
TL;DR: Epithelial–mesenchymal transition provides a new basis for understanding the progression of carcinoma towards dedifferentiated and more malignant states.
Abstract: Without epithelial–mesenchymal transitions, in which polarized epithelial cells are converted into motile cells, multicellular organisms would be incapable of getting past the blastula stage of embryonic development. However, this important developmental programme has a more sinister role in tumour progression. Epithelial–mesenchymal transition provides a new basis for understanding the progression of carcinoma towards dedifferentiated and more malignant states.

6,362 citations

Journal ArticleDOI
19 May 2011-Nature
TL;DR: Preclinical and clinical studies have shown new molecular targets and principles, which may provide avenues for improving the therapeutic benefit from anti-angiogenic strategies.
Abstract: Blood vessels deliver oxygen and nutrients to every part of the body, but also nourish diseases such as cancer. Over the past decade, our understanding of the molecular mechanisms of angiogenesis (blood vessel growth) has increased at an explosive rate and has led to the approval of anti-angiogenic drugs for cancer and eye diseases. So far, hundreds of thousands of patients have benefited from blockers of the angiogenic protein vascular endothelial growth factor, but limited efficacy and resistance remain outstanding problems. Recent preclinical and clinical studies have shown new molecular targets and principles, which may provide avenues for improving the therapeutic benefit from anti-angiogenic strategies.

4,441 citations