scispace - formally typeset
Search or ask a question
Author

Christine N. Metz

Bio: Christine N. Metz is an academic researcher from The Feinstein Institute for Medical Research. The author has contributed to research in topics: Macrophage migration inhibitory factor & Cytokine. The author has an hindex of 76, co-authored 215 publications receiving 21377 citations. Previous affiliations of Christine N. Metz include Columbia University & North Shore-LIJ Health System.


Papers
More filters
Journal ArticleDOI
07 Sep 1995-Nature
TL;DR: The unexpected finding that low con-centrations of glucocorticoids induce rather than inhibit MIF production from macrophages is reported, identifying a unique counter-regulatory system that functions to control inflammatory and immune responses.
Abstract: Glucocorticoid hormones are important for vital functions and act to modulate inflammatory and immune responses. Yet, in contrast to other hormonal systems, no endogenous mediators have been identified that can directly counter-regulate their potent anti-inflammatory and immunosuppressive properties. Recent investigations of the protein macrophage migration inhibitory factor (MIF), which was discovered originally to be a T-lymphocyte-derived factor, have established it to be a pro-inflammatory pituitary and macrophage cytokine and a critical mediator of septic shock. Here we report the unexpected finding that low concentrations of glucocorticoids induce rather than inhibit MIF production from macrophages. MIF then acts to override glucocorticoid-mediated inhibition of cytokine secretion by lipopolysaccharide (LPS)-stimulated monocytes and to overcome glucocorticoid protection against lethal endotoxaemia. These observations identify a unique counter-regulatory system that functions to control inflammatory and immune responses.

1,130 citations

Journal ArticleDOI
TL;DR: The authors showed that nicotine attenuates serum HMGB1 levels and improves survival in experimental models of sepsis, even when treatment is started after the onset of the disease and suggest that selective nicotinic agonists for the α7nAChR might have therapeutic potential for the treatment of septicemia.
Abstract: Physiological anti-inflammatory mechanisms can potentially be exploited for the treatment of inflammatory disorders. Here we report that the neurotransmitter acetylcholine inhibits HMGB1 release from human macrophages by signaling through a nicotinic acetylcholine receptor. Nicotine, a selective cholinergic agonist, is more efficient than acetylcholine and inhibits HMGB1 release induced by either endotoxin or tumor necrosis factor-alpha (TNF-α). Nicotinic stimulation prevents activation of the NF-κB pathway and inhibits HMGB1 secretion through a specific 'nicotinic anti-inflammatory pathway' that requires the α7 nicotinic acetylcholine receptor (α7nAChR). In vivo, treatment with nicotine attenuates serum HMGB1 levels and improves survival in experimental models of sepsis, even when treatment is started after the onset of the disease. These results reveal acetylcholine as the first known physiological inhibitor of HMGB1 release from human macrophages and suggest that selective nicotinic agonists for the α7nAChR might have therapeutic potential for the treatment of sepsis.

1,106 citations

PatentDOI
TL;DR: In this paper, a method for producing fibrocytes comprising contacting a population of human peripheral blood mononuclear cells (PBMC) comprising predominantly CD14+ cells with autologous T cells or a form of TGFs, preferably TGF-s1, was described.
Abstract: Disclosed are the identification of a differentiation pathway of cultured fibrocytes, characterization of the signals for fibrocyte migration to wound site in vivo , and the potential role of fibrocytes in wound contracture. The invention relates to a method for producing fibrocytes comprising contacting a population of human peripheral blood mononuclear cells (PBMC comprising predominantly CD14+ cells with autologous T cells or a form of TGFs, preferably TGFs1, thereby inducing differentiation of fibrocytes from precursors in the PBMC population. These fibrocytes are useful for treating a wound in a mammalian subject by administering fibrocytes to the subject, preferably in combination with TGF1. Also disclosed are methods for attracting or targeting fibrocytes to a wound by administering SLC or another agonist of the CCR7 chemokine receptor, at or near the site of the wound, and methods of decreasing undesired wound fibrosis by inhibiting fibrocyte activity.

977 citations

Journal ArticleDOI
TL;DR: It is reported herein that CD74, a Type II transmembrane protein, is a high-affinity binding protein for MIF, and it is identified as a natural ligand forCD74, which has been implicated previously in signaling and accessory functions for immune cell activation.
Abstract: Macrophage migration inhibitory factor (MIF) accounts for one of the first cytokine activities to have been described, and it has emerged recently to be an important regulator of innate and adaptive immunity. MIF is an upstream activator of monocytes/macrophages, and it is centrally involved in the pathogenesis of septic shock, arthritis, and other inflammatory conditions. The protein is encoded by a unique but highly conserved gene, and X-ray crystallography studies have shown MIF to define a new protein fold and structural superfamily. Although recent work has begun to illuminate the signal transduction pathways activated by MIF, the nature of its membrane receptor has not been known. Using expression cloning and functional analysis, we report herein that CD74, a Type II transmembrane protein, is a high-affinity binding protein for MIF. MIF binds to the extracellular domain of CD74, and CD74 is required for MIF-induced activation of the extracellular signal–regulated kinase–1/2 MAP kinase cascade, cell proliferation, and PGE2 production. A recombinant, soluble form of CD74 binds MIF with a dissociation constant of ∼9 × 10−9 K d, as defined by surface plasmon resonance (BIAcore analysis), and soluble CD74 inhibits MIF-mediated extracellular signal–regulated kinase activation in defined cell systems. These data provide a molecular basis for MIF's interaction with target cells and identify it as a natural ligand for CD74, which has been implicated previously in signaling and accessory functions for immune cell activation.

970 citations

Journal ArticleDOI
TL;DR: It is reported here that macrophage migration inhibitory factor (MIF) is a critical mediator of septic shock and a new target for therapeutic intervention is identified.
Abstract: Identification of new therapeutic targets for the management of septic shock remains imperative as all investigational therapies, including anti-tumor necrosis factor (TNF) and anti-interleukin (IL)-1 agents, have uniformly failed to lower the mortality of critically ill patients with severe sepsis We report here that macrophage migration inhibitory factor (MIF) is a critical mediator of septic shock High concentrations of MIF were detected in the peritoneal exudate fluid and in the systemic circulation of mice with bacterial peritonitis Experiments performed in TNFalpha knockout mice allowed a direct evaluation of the part played by MIF in sepsis in the absence of this pivotal cytokine of inflammation Anti-MIF antibody protected TNFalpha knockout from lethal peritonitis induced by cecal ligation and puncture (CLP), providing evidence of an intrinsic contribution of MIF to the pathogenesis of sepsis Anti-MIF antibody also protected normal mice from lethal peritonitis induced by both CLP and Escherichia coli, even when treatment was started up to 8 hours after CLP Conversely, co-injection of recombinant MIF and E coli markedly increased the lethality of peritonitis Finally, high concentrations of MIF were detected in the plasma of patients with severe sepsis or septic shock These studies define a critical part for MIF in the pathogenesis of septic shock and identify a new target for therapeutic intervention

789 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms and mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
Abstract: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms. Work over the past few years has led to the elucidation of a TGF-beta signal transduction network. This network involves receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins, which move into the nucleus, where they activate target gene transcription in association with DNA-binding partners. Distinct repertoires of receptors, SMAD proteins, and DNA-binding partners seemingly underlie, in a cell-specific manner, the multifunctional nature of TGF-beta and related factors. Mutations in these pathways are the cause of various forms of human cancer and developmental disorders.

7,710 citations

Journal ArticleDOI
TL;DR: An overview of the definitions, clinical features, and epidemiology of the acute respiratory distress syndrome is provided and advances in the areas of pathogenesis, resolution, and treatment are discussed.
Abstract: The acute respiratory distress syndrome is a common, devastating clinical syndrome of acute lung injury that affects both medical and surgical patients. Since the last review of this syndrome appeared in the Journal, 1 more uniform definitions have been devised and important advances have occurred in the understanding of the epidemiology, natural history, and pathogenesis of the disease, leading to the design and testing of new treatment strategies. This article provides an overview of the definitions, clinical features, and epidemiology of the acute respiratory distress syndrome and discusses advances in the areas of pathogenesis, resolution, and treatment. Historical Perspective and Definitions . . .

5,002 citations

Journal ArticleDOI
03 Oct 2002-Nature
TL;DR: The genome sequence of P. falciparum clone 3D7 is reported, which is the most (A + T)-rich genome sequenced to date and is being exploited in the search for new drugs and vaccines to fight malaria.
Abstract: The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.

4,312 citations

Journal ArticleDOI
TL;DR: This review examines evolving concepts of sepsis and discusses new and potential therapies, including therapy with activated protein C, stringent control of blood glucose, and early goal-directed therapy to treat cellular oxygen deficit.
Abstract: Sepsis is the leading cause of death in critically ill patients in the United States. Yet the individual host response to septicemia is variable, depending on the patient's immune response, age, nutritional status, and coexisting conditions, as well as on the virulence of the organism and the size of the inoculum. This review examines evolving concepts of sepsis and discusses new and potential therapies. Recent clinical advances include therapy with activated protein C, stringent control of blood glucose, and early goal-directed therapy to treat cellular oxygen deficit. Future therapies may be focused on modulating the immune response in the light of the characteristics of the specific pathogen, the genetic profile of the patient, and the duration of the disease.

3,773 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: The discovery that cholinergic neurons inhibit acute inflammation has qualitatively expanded understanding of how the nervous system modulates immune responses, and the opportunity now exists to apply this insight to the treatment of inflammation through selective and reversible 'hard-wired' neural systems.
Abstract: Inflammation is a local, protective response to microbial invasion or injury. It must be fine-tuned and regulated precisely, because deficiencies or excesses of the inflammatory response cause morbidity and shorten lifespan. The discovery that cholinergic neurons inhibit acute inflammation has qualitatively expanded our understanding of how the nervous system modulates immune responses. The nervous system reflexively regulates the inflammatory response in real time, just as it controls heart rate and other vital functions. The opportunity now exists to apply this insight to the treatment of inflammation through selective and reversible 'hard-wired' neural systems.

3,146 citations