scispace - formally typeset
Search or ask a question
Author

Christine S. Hvidberg

Other affiliations: Niels Bohr Institute
Bio: Christine S. Hvidberg is an academic researcher from University of Copenhagen. The author has contributed to research in topics: Ice sheet & Ice stream. The author has an hindex of 20, co-authored 66 publications receiving 8935 citations. Previous affiliations of Christine S. Hvidberg include Niels Bohr Institute.


Papers
More filters
Journal ArticleDOI
15 Jul 1993-Nature
TL;DR: In this paper, the authors present a detailed stable isotope record for the full length of the Greenland Ice-core Project Summit ice core, extending over the past 250 kyr according to a calculated timescale, and find that climate instability was not confined to the last glaciation, but appears also have been marked during the last interglacial (as explored more fully in a companion paper), and during the previous Saale-Holstein glacial cycle.
Abstract: RECENT results1,2 from two ice cores drilled in central Greenland have revealed large, abrupt climate changes of at least regional extent during the late stages of the last glaciation, suggesting that climate in the North Atlantic region is able to reorganize itself rapidly, perhaps even within a few decades. Here we present a detailed stable-isotope record for the full length of the Greenland Ice-core Project Summit ice core, extending over the past 250 kyr according to a calculated timescale. We find that climate instability was not confined to the last glaciation, but appears also to have been marked during the last interglacial (as explored more fully in a companion paper3) and during the previous Saale–Holstein glacial cycle. This is in contrast with the extreme stability of the Holocene, suggesting that recent climate stability may be the exception rather than the rule. The last interglacial seems to have lasted longer than is implied by the deep-sea SPECMAP record4, in agreement with other land-based observations5,6. We suggest that climate instability in the early part of the last interglacial may have delayed the melting of the Saalean ice sheets in America and Eurasia, perhaps accounting for this discrepancy.

4,367 citations

Journal ArticleDOI
09 Sep 2004-Nature
TL;DR: An undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period, shows a slow decline in temperatures that marked the initiation of the last glacial period.
Abstract: High-resolution record of Northern Hemisphere climate extending into the last interglacial period

2,522 citations

Journal ArticleDOI
Dorthe Dahl-Jensen, Mary R. Albert1, Ala Aldahan2, Nobuhiko Azuma3, David Balslev-Clausen4, Matthias Baumgartner, Ann-Marie Berggren2, Matthias Bigler, Tobias Binder5, Thomas Blunier, J. C. Bourgeois6, Edward J. Brook7, Susanne L Buchardt4, Christo Buizert, Emilie Capron, Jérôme A Chappellaz8, J. Chung9, Henrik Clausen4, Ivana Cvijanovic4, Siwan M. Davies10, Peter D. Ditlevsen4, Olivier Eicher11, Hubertus Fischer11, David A. Fisher6, L. G. Fleet12, Gideon Gfeller11, Vasileios Gkinis4, Sivaprasad Gogineni13, Kumiko Goto-Azuma14, Aslak Grinsted4, H. Gudlaugsdottir15, Myriam Guillevic4, S. B. Hansen4, Martin Hansson16, Motohiro Hirabayashi14, S. Hong, S. D. Hur9, Philippe Huybrechts17, Christine S. Hvidberg4, Yoshinori Iizuka16, Theo M. Jenk4, Sigfus J Johnsen4, Tyler R. Jones18, Jean Jouzel, Nanna B. Karlsson4, Kenji Kawamura14, Kaitlin M. Keegan1, E. Kettner4, Sepp Kipfstuhl19, Helle Astrid Kjær4, Michelle Koutnik20, Takayuki Kuramoto14, Peter Köhler19, Thomas Laepple19, Amaelle Landais, Peter L. Langen4, L. B. Larsen4, Daiana Leuenberger11, Markus Leuenberger, Carl Leuschen13, J. Li13, Vladimir Ya. Lipenkov21, Patricia Martinerie8, Olivia J. Maselli22, Valérie Masson-Delmotte, Joseph R. McConnell22, Heinrich Miller19, Olivia Mini11, A. Miyamoto23, M. Montagnat-Rentier24, Robert Mulvaney12, Raimund Muscheler, Anais Orsi25, John Paden13, Christian Panton4, Frank Pattyn26, Jean-Robert Petit8, K. Pol, Trevor Popp, G. Possnert, Frédéric Prié, M. Prokopiou, Aurélien Quiquet24, Sune Olander Rasmussen4, Dominique Raynaud8, J. Ren, C. Reutenauer4, Catherine Ritz8, Thomas Röckmann, Jean Rosen7, Mauro Rubino, Oleg Rybak19, Denis Samyn2, Célia Sapart27, Adrian Schilt28, A. Schmidt4, Jakob Schwander11, Simon Schüpbach, Inger K Seierstad, Jeffrey P. Severinghaus25, Simon G. Sheldon4, Sebastian B. Simonsen4, Jesper Sjolte, Anne M. Solgaard4, Todd Sowers, Peter Sperlich, Hans Christian Steen-Larsen29, Konrad Steffen30, J. P. Steffensen31, Daniel Steinhage19, Thomas F. Stocker, C. Stowasser18, A. S. Sturevik32, W. T. Sturges33, Arny E. Sveinbjörnsdottir29, A. Svensson30, Jean-Louis Tison31, J. Uetake34, Paul Vallelonga, R. S. W. van de Wal19, G. van der Wel11, Bruce H. Vaughn4, Bo Møllesøe Vinther2, E. Waddington35, Anna Wegner, Ilka Weikusat19, James W. C. White26, Frank Wilhelms19, Mai Winstrup4, Emmanuel Witrant, Eric W. Wolff11, C. Xiao, J. Zheng36 
24 Jan 2013-Nature
TL;DR: In this paper, the North Greenland Eemian Ice Drilling (NEEM) ice core was extracted from folded Greenland ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records.
Abstract: Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

546 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed and continuous δ8O profile has been obtained and is discussed in terms of past temperatures in Greenland, and a three-core stacked annual δ 8O profile for the past 917 years has been discussed.
Abstract: Over 70,000 samples from the 3029-m-long Greenland Ice Core Project (GRIP) ice core drilled on the top of the Greenland Ice Sheet (Summit) have been analyzed for δ8O. A highly detailed and continuous δ8O profile has thus been obtained and is discussed in terms of past temperatures in Greenland. We also discuss a three-core stacked annual δ8O profile for the past 917 years. The short-term (<50 years) variability of the annual δ8O signal is found to be 1‰ in the Holocene, and estimates for the coldest parts of the last glacial are 3‰ or higher. These data also provide insights into possible disturbances of the stratigraphic layering in the core which seems to be sound down to the onset of the Eemian. Spectral analysis of highly detailed sequences of the profile helps determine the smoothing of the δ8O signal, which for the Holocene ice is found to be considerably stronger than expected. We suggest this is due to a process involving diffusion of water molecules along crystal boundaries in the recrystallizing ice matrix. Deconvolution techniques were employed for restoring with great confidence the highly attenuated annual δ8O signal in the Holocene. We confirm earlier findings of dramatic temperature changes in Greenland during the last glacial cycle. Abrupt and strong climatic shifts are also found within the Eem/Sangamon Interglaciation, which is normally recorded as a period of warm and stable climate in lower latitudes. The stratigraphic continuity of the Eemian layers is consequently discussed in section 3 of this paper in terms of all pertinent data which we are not able to reconcile.

459 citations

Dorthe Dahl-Jensen, Mary R. Albert, Ala Aldahan, Nobuhiko Azuma, David Balslev-Clausen, Matthias Baumgartner, Ann-Marie Berggren, Matthias Bigler, Tobias Binder, Thomas Blunier, J. C. Bourgeois, Edward J. Brook, Susanne L Buchardt, Christo Buizert, Emilie Capron, Jérôme A Chappellaz, J. Chung, Henrik Clausen, Ivana Cvijanovic, Siwan M. Davies, Peter D. Ditlevsen, Olivier Eicher, Hubertus Fischer, David A. Fisher, L. G. Fleet, Gideon Gfeller, Vasileios Gkinis, Sivaprasad Gogineni, Kumiko Goto-Azuma, Aslak Grinsted, H. Gudlaugsdottir, Myriam Guillevic, S. B. Hansen, Martin Hansson, Motohiro Hirabayashi, S. Hong, S. D. Hur, Philippe Huybrechts, Christine S. Hvidberg, Yoshinori Iizuka, Theo M. Jenk, Sigfus J Johnsen, Tyler R. Jones, Jean Jouzel, Nanna B. Karlsson, Kenji Kawamura, Kaitlin M. Keegan, E. Kettner, Sepp Kipfstuhl, Helle Astrid Kjær, Michelle Koutnik, Takayuki Kuramoto, Peter Köhler, Thomas Laepple, Amaelle Landais, Peter L. Langen, L. B. Larsen, Daiana Leuenberger, Markus Leuenberger, Carl Leuschen, J. Li, Vladimir Ya. Lipenkov, Patricia Martinerie, Olivia J. Maselli, Valérie Masson-Delmotte, Joseph R. McConnell, Heinrich Miller, Olivia Mini, A. Miyamoto, M. Montagnat-Rentier, Robert Mulvaney, Raimund Muscheler, Anais Orsi, John Paden, Christian Panton, Frank Pattyn, Jean-Robert Petit, K. Pol, Trevor Popp, G. Possnert, Frédéric Prié, M. Prokopiou, Aurélien Quiquet, Sune Olander Rasmussen, Dominique Raynaud, J. Ren, C. Reutenauer, Catherine Ritz, Thomas Röckmann, Jean Rosen, Mauro Rubino, Oleg Rybak, Denis Samyn, Célia Sapart, Adrian Schilt, A. Schmidt, Jakob Schwander, Simon Schüpbach, Inger K Seierstad, Jeffrey P. Severinghaus, Simon G. Sheldon, Sebastian B. Simonsen, Jesper Sjolte, Anne M. Solgaard, Todd Sowers, Peter Sperlich, Hans Christian Steen-Larsen, Konrad Steffen, J. P. Steffensen, Daniel Steinhage, Thomas F. Stocker, C. Stowasser, A. S. Sturevik, W. T. Sturges, Arny E. Sveinbjörnsdottir, A. Svensson, Jean-Louis Tison, J. Uetake, Paul Vallelonga, R. S. W. van de Wal, G. van der Wel, Bruce H. Vaughn, Bo Møllesøe Vinther, E. Waddington, Anna Wegner, Ilka Weikusat, James W. C. White, Frank Wilhelms, Mai Winstrup, Emmanuel Witrant, Eric W. Wolff, C. Xiao, J. Zheng, N Community 
01 Jan 2013
TL;DR: The new North Greenland Eemian Ice Drilling (‘NEEM’) ice core is presented and shows only a modest ice-sheet response to the strong warming in the early Eemians, which was probably driven by the decreasing summer insolation.
Abstract: Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

451 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, Heaton, AG Hogg, KA Hughen, KF Kaiser, B Kromer, SW Manning, RW Reimer, DA Richards, JR Southon, S Talamo, CSM Turney, J van der Plicht, CE Weyhenmeyer
Abstract: Additional co-authors: TJ Heaton, AG Hogg, KA Hughen, KF Kaiser, B Kromer, SW Manning, RW Reimer, DA Richards, JR Southon, S Talamo, CSM Turney, J van der Plicht, CE Weyhenmeyer

13,605 citations

Journal ArticleDOI
23 Sep 2009-Nature
TL;DR: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.
Abstract: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.

8,837 citations

Journal ArticleDOI
TL;DR: In this paper, a 53-Myr stack (LR04) of benthic δ18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm is presented.
Abstract: [1] We present a 53-Myr stack (the “LR04” stack) of benthic δ18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm This is the first benthic δ18O stack composed of more than three records to extend beyond 850 ka, and we use its improved signal quality to identify 24 new marine isotope stages in the early Pliocene We also present a new LR04 age model for the Pliocene-Pleistocene derived from tuning the δ18O stack to a simple ice model based on 21 June insolation at 65°N Stacked sedimentation rates provide additional age model constraints to prevent overtuning Despite a conservative tuning strategy, the LR04 benthic stack exhibits significant coherency with insolation in the obliquity band throughout the entire 53 Myr and in the precession band for more than half of the record The LR04 stack contains significantly more variance in benthic δ18O than previously published stacks of the late Pleistocene as the result of higher-resolution records, a better alignment technique, and a greater percentage of records from the Atlantic Finally, the relative phases of the stack's 41- and 23-kyr components suggest that the precession component of δ18O from 27–16 Ma is primarily a deep-water temperature signal and that the phase of δ18O precession response changed suddenly at 16 Ma

6,186 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new approach to global sustainability in which they define planetary boundaries within which they expect that humanity can operate safely. But the proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development.
Abstract: Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere <350 ppm and/or a maximum change of +1 W m-2 in radiative forcing); ocean acidification (mean surface seawater saturation state with respect to aragonite ≥ 80% of pre-industrial levels); stratospheric ozone (<5% reduction in O3 concentration from pre-industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N2 to 35 Tg N yr-1) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural background weathering of P); global freshwater use (<4000 km3 yr-1 of consumptive use of runoff resources); land system change (<15% of the ice-free land surface under cropland); and the rate at which biological diversity is lost (annual rate of <10 extinctions per million species). The two additional planetary boundaries for which we have not yet been able to determine a boundary level are chemical pollution and atmospheric aerosol loading. We estimate that humanity has already transgressed three planetary boundaries: for climate change, rate of biodiversity loss, and changes to the global nitrogen cycle. Planetary boundaries are interdependent, because transgressing one may both shift the position of other boundaries or cause them to be transgressed. The social impacts of transgressing boundaries will be a function of the social-ecological resilience of the affected societies. Our proposed boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure of avoiding major human-induced environmental change on a global scale.

4,771 citations

Journal ArticleDOI
TL;DR: The genetic effects of pleistocene ice ages are approached by deduction from paleoenvironmental information, by induction from the genetic structure of populations and species, and by their combination to infer likely consequences.
Abstract: The genetic effects of pleistocene ice ages are approached by deduction from paleoenvironmental information, by induction from the genetic structure of populations and species, and by their combination to infer likely consequences. (1) Recent palaeoclimatic information indicate rapid global reversals and changes in ranges of species which would involve elimination with spreading from the edge. Leading edge colonization during a rapid expansion would be leptokurtic and lead to homozygosity and spatial assortment of genomes. In Europe and North America, ice age contractions were into southern refugia, which would promote genome reorganization. (2) The present day genetic structure of species shows frequent geographic subdivision, with parapatric genomes, hybrid zones and suture zones. A survey of recent DNA phylogeographic information supports and extends earlier work. (3) The grasshopperChorthippus parallelusis used to illustrate such data and processes. Its range in Europe is divided on DNA sequences into five parapatric races, with southern genomes showing greater haplotype diversity — probably due to southern mountain blocks acting as refugia and northern expansion reducing diversity. (4) Comparison with other recent studies shows a concordance of such phylogeographic data over pleistocene time scales. (5) The role that ice age range changes may have played in changing adaptations is explored, including the limits of range, rapid change in new invasions and refugial differentiation in a variety of organisms. (6) The effects of these events in causing divergence and speciation are explored usingChorthippusas a paradigm. Repeated contraction and expansion would accumulate genome differences and adaptations, protected from mixing by hybrid zones, and such a composite mode of speciation could apply to many organisms.

3,850 citations