scispace - formally typeset
Search or ask a question
Author

Christine Strauss

Other affiliations: University of Salzburg
Bio: Christine Strauss is an academic researcher from University of Vienna. The author has contributed to research in topics: Service (systems architecture) & Business value. The author has an hindex of 27, co-authored 189 publications receiving 4770 citations. Previous affiliations of Christine Strauss include University of Salzburg.


Papers
More filters
01 Jan 1997
TL;DR: It turns out that the new rank based ant system can compete with the other methods in terms of average behavior, and shows even better worst case behavior.
Abstract: The ant system is a new meta-heuristic for hard combinatorial optimization problems. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem (TSP), but has been also successfully applied to problems such as quadratic assignment, job-shop scheduling, vehicle routing and graph coloring.In this paper we introduce a new rank based version of the ant system and present results of a computational study, where we compare the ant system with simulated annealing and a genetic algorithm on several TSP instances. It turns out that our rank based ant system can compete with the other methods in terms of average behavior, and shows even better worst case behavior. (author's abstract)

881 citations

Journal ArticleDOI
TL;DR: An improved ant system algorithm for the Vehicle RoutingProblem with one central depot and identical vehicles is presented and a comparison with five other metaheuristic approaches for solving Vehicle Routed Problems is given.
Abstract: The Ant System is a distributed metaheuristic that combines an adaptive memory with alocal heuristic function to repeatedly construct solutions of hard combinatorial optimizationproblems. In this paper, we present an improved ant system algorithm for the Vehicle RoutingProblem with one central depot and identical vehicles. Computational results on fourteenbenchmark problems from the literature are reported and a comparison with five othermetaheuristic approaches for solving Vehicle Routing Problems is given.

652 citations

Book ChapterDOI
01 Jan 1999
TL;DR: A recently proposed metaheuristic, the Ant System, is used to solve the Vehicle Routing Problem in its basic form, i.e., with capacity and distance restrictions, one central depot and identical vehicles.
Abstract: In this paper we use a recently proposed metaheuristic, the Ant System, to solve the Vehicle Routing Problem in its basic form, i.e., with capacity and distance restrictions, one central depot and identical vehicles. A “hybrid” Ant System algorithm is first presented and then improved using problem-specific information (savings, capacity utilization). Experiments on various aspects of the algorithm and computational results for fourteen benchmark problems are reported and compared to those of other metaheuristic approaches such as Tabu Search, Simulated Annealing and Neural Networks.

432 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce Pareto Ant Colony Optimization as an especially effective meta-heuristic for solving the portfolio selection problem and compare its performance to other heuristic approaches by means of computational experiments with random instances.
Abstract: Selecting the “best” project portfolio out of a given set of investment proposals is a common and often critical management issue. Decision-makers must regularly consider multiple objectives and often have little a priori preference information available to them. Given these contraints, they can improve their chances of achieving success by following a two-phase procedure that first determines the solution space of all efficient (i.e., Pareto-optimal) portfolios and then allows them to interactively explore that space. However, the task of determining the solution space is not trivial: brute-force complete enumeration only works for small instances and the underlying NP-hard problem becomes increasingly demanding as the number of projects grows. Meta-heuristics provide a useful compromise between the amount of computation time necessary and the quality of the approximated solution space. This paper introduces Pareto Ant Colony Optimization as an especially effective meta-heuristic for solving the portfolio selection problem and compares its performance to other heuristic approaches (i.e., Pareto Simulated Annealing and the Non-Dominated Sorting Genetic Algorithm) by means of computational experiments with random instances. Furthermore, we provide a numerical example based on real world data.

419 citations

Journal ArticleDOI
TL;DR: In this paper, the beneficial effect of P-ACO’s core function (i.e., the learning feature) is substantiated by means of a numerical example based on real world data and an integer linear programming preprocessing procedure that identifies several efficient portfolio solutions within a few seconds and correspondingly initializes the pheromone trails before running P- ACO is supplemented.

166 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Book
01 Jan 2004
TL;DR: Ant colony optimization (ACO) is a relatively new approach to problem solving that takes inspiration from the social behaviors of insects and of other animals as discussed by the authors In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful is the general purpose optimization technique known as ant colony optimization.
Abstract: Swarm intelligence is a relatively new approach to problem solving that takes inspiration from the social behaviors of insects and of other animals In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful is the general purpose optimization technique known as ant colony optimization Ant colony optimization (ACO) takes inspiration from the foraging behavior of some ant species These ants deposit pheromone on the ground in order to mark some favorable path that should be followed by other members of the colony Ant colony optimization exploits a similar mechanism for solving optimization problems From the early nineties, when the first ant colony optimization algorithm was proposed, ACO attracted the attention of increasing numbers of researchers and many successful applications are now available Moreover, a substantial corpus of theoretical results is becoming available that provides useful guidelines to researchers and practitioners in further applications of ACO The goal of this article is to introduce ant colony optimization and to survey its most notable applications

6,861 citations

Journal Article
TL;DR: This research examines the interaction between demand and socioeconomic attributes through Mixed Logit models and the state of art in the field of automatic transport systems in the CityMobil project.
Abstract: 2 1 The innovative transport systems and the CityMobil project 10 1.1 The research questions 10 2 The state of art in the field of automatic transport systems 12 2.1 Case studies and demand studies for innovative transport systems 12 3 The design and implementation of surveys 14 3.1 Definition of experimental design 14 3.2 Questionnaire design and delivery 16 3.3 First analyses on the collected sample 18 4 Calibration of Logit Multionomial demand models 21 4.1 Methodology 21 4.2 Calibration of the “full” model. 22 4.3 Calibration of the “final” model 24 4.4 The demand analysis through the final Multinomial Logit model 25 5 The analysis of interaction between the demand and socioeconomic attributes 31 5.1 Methodology 31 5.2 Application of Mixed Logit models to the demand 31 5.3 Analysis of the interactions between demand and socioeconomic attributes through Mixed Logit models 32 5.4 Mixed Logit model and interaction between age and the demand for the CTS 38 5.5 Demand analysis with Mixed Logit model 39 6 Final analyses and conclusions 45 6.1 Comparison between the results of the analyses 45 6.2 Conclusions 48 6.3 Answers to the research questions and future developments 52

4,784 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
TL;DR: An overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies' foraging behavior, and the ant colony optimization (ACO) metaheuristic is presented.
Abstract: This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies' foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic biological findings on real ants are reviewed and their artificial counterparts as well as the ACO metaheuristic are defined. In the second part of the article a number of applications of ACO algorithms to combinatorial optimization and routing in communications networks are described. We conclude with a discussion of related work and of some of the most important aspects of the ACO metaheuristic.

2,862 citations