scispace - formally typeset
Search or ask a question
Author

Christine Tedijanto

Bio: Christine Tedijanto is an academic researcher from Harvard University. The author has contributed to research in topics: Trachoma & Medicine. The author has an hindex of 9, co-authored 20 publications receiving 2617 citations. Previous affiliations of Christine Tedijanto include University of California, San Francisco & Foundation University, Islamabad.

Papers
More filters
Journal ArticleDOI
14 Apr 2020-Science
TL;DR: Using existing data to build a deterministic model of multiyear interactions between existing coronaviruses, with a focus on the United States, is used to project the potential epidemic dynamics and pressures on critical care capacity over the next 5 years and projected that recurrent wintertime outbreaks of SARS-CoV-2 will probably occur after the initial, most severe pandemic wave.
Abstract: It is urgent to understand the future of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) transmission. We used estimates of seasonality, immunity, and cross-immunity for human coronavirus OC43 (HCoV-OC43) and HCoV-HKU1 using time-series data from the United States to inform a model of SARS-CoV-2 transmission. We projected that recurrent wintertime outbreaks of SARS-CoV-2 will probably occur after the initial, most severe pandemic wave. Absent other interventions, a key metric for the success of social distancing is whether critical care capacities are exceeded. To avoid this, prolonged or intermittent social distancing may be necessary into 2022. Additional interventions, including expanded critical care capacity and an effective therapeutic, would improve the success of intermittent distancing and hasten the acquisition of herd immunity. Longitudinal serological studies are urgently needed to determine the extent and duration of immunity to SARS-CoV-2. Even in the event of apparent elimination, SARS-CoV-2 surveillance should be maintained because a resurgence in contagion could be possible as late as 2024.

2,203 citations

Posted ContentDOI
06 Mar 2020-medRxiv
TL;DR: It is projected that recurrent wintertime outbreaks of SARS-CoV-2 will probably occur after an initial pandemic wave and the full range of plausible transmission scenarios are summarized.
Abstract: There is an urgent need to project how transmission of the novel betacoronavirus SARS-CoV-2 will unfold in coming years. These dynamics will depend on seasonality, the duration of immunity, and the strength of cross-immunity to/from the other human coronaviruses. Using data from the United States, we measured how these factors affect transmission of human betacoronaviruses HCoV-OC43 and HCoV-HKU1. We then built a mathematical model to simulate transmission of SARS-CoV-2 through the year 2025. We project that recurrent wintertime outbreaks of SARS-CoV-2 will probably occur after an initial pandemic wave. We summarize the full range of plausible transmission scenarios and identify key data still needed to distinguish between them, most importantly longitudinal serological studies to determine the duration of immunity to SARS-CoV-2.

497 citations

Journal ArticleDOI
TL;DR: The purpose of this document is to summarize challenges of estimation of the effective reproductive number Rt, illustrate them with examples from synthetic data, and, where possible, make recommendations.
Abstract: Estimation of the effective reproductive number Rt is important for detecting changes in disease transmission over time. During the Coronavirus Disease 2019 (COVID-19) pandemic, policy makers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of Rt, we recommend the approach of Cori and colleagues, which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis, are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to the spread. We advise caution when using methods derived from the approach of Bettencourt and Ribeiro, as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation.

360 citations

Posted ContentDOI
24 Mar 2020-medRxiv
TL;DR: It is assessed that one-time interventions will be insufficient to maintain COVID-19 prevalence within the critical care capacity of the United States and these measures may be necessary into 2022.
Abstract: The SARS-CoV-2 pandemic is straining healthcare resources worldwide, prompting social distancing measures to reduce transmission intensity. The amount of social distancing needed to curb the SARS-CoV-2 epidemic in the context of seasonally varying transmission remains unclear. Using a mathematical model, we assessed that one-time interventions will be insufficient to maintain COVID-19 prevalence within the critical care capacity of the United States. Seasonal variation in transmission will facilitate epidemic control during the summer months but could lead to an intense resurgence in the autumn. Intermittent distancing measures can maintain control of the epidemic, but without other interventions, these measures may be necessary into 2022. Increasing critical care capacity could reduce the duration of the SARS-CoV-2 epidemic while ensuring that critically ill patients receive appropriate care.

247 citations

Journal ArticleDOI
TL;DR: It is estimated that pneumococcal conjugate vaccination programs result in nearly the same proportional reduction in total antibiotic exposures of Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli, despite the latter two organisms not being targeted by the vaccine.
Abstract: Bystander selection—the selective pressure for resistance exerted by antibiotics on microbes that are not the target pathogen of treatment—is critical to understanding the total impact of broad-spectrum antibiotic use on pathogenic bacterial species that are often carried asymptomatically. However, to our knowledge, this effect has never been quantified. We quantify bystander selection for resistance for a range of clinically relevant antibiotic–species pairs as the proportion of all antibiotic exposures received by a species for conditions in which that species was not the causative pathogen (“proportion of bystander exposures”). Data sources include the 2010–2011 National Ambulatory Medical Care Survey and National Hospital Ambulatory Medical Care Survey, the Human Microbiome Project, and additional carriage and etiological data from existing literature. For outpatient prescribing in the United States, we find that this proportion over all included antibiotic classes is over 80% for eight of nine organisms of interest. Low proportions of bystander exposure are often associated with infrequent bacterial carriage or concentrated prescribing of a particular antibiotic for conditions caused by the species of interest. Applying our results, we roughly estimate that pneumococcal conjugate vaccination programs result in nearly the same proportional reduction in total antibiotic exposures of Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli, despite the latter two organisms not being targeted by the vaccine. These results underscore the importance of considering antibiotic exposures of bystanders, in addition to the target pathogen, in measuring the impact of antibiotic resistance interventions.

125 citations


Cited by
More filters
Journal ArticleDOI
25 Jun 2020-Cell
TL;DR: Using HLA class I and II predicted peptide ‘megapools’, circulating SARS-CoV-2−specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively, suggesting cross-reactive T cell recognition between circulating ‘common cold’ coronaviruses and SARS.

3,043 citations

Journal ArticleDOI
TL;DR: A cohort of asymptomatic patients infected with SARS-CoV-2 had significantly lower levels of virus-specific IgG antibodies compared to a cohort of age- and sex-matched symptomatic infected patients.
Abstract: The clinical features and immune responses of asymptomatic individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have not been well described We studied 37 asymptomatic individuals in the Wanzhou District who were diagnosed with RT-PCR-confirmed SARS-CoV-2 infections but without any relevant clinical symptoms in the preceding 14 d and during hospitalization Asymptomatic individuals were admitted to the government-designated Wanzhou People's Hospital for centralized isolation in accordance with policy1 The median duration of viral shedding in the asymptomatic group was 19 d (interquartile range (IQR), 15-26 d) The asymptomatic group had a significantly longer duration of viral shedding than the symptomatic group (log-rank P = 0028) The virus-specific IgG levels in the asymptomatic group (median S/CO, 34; IQR, 16-107) were significantly lower (P = 0005) relative to the symptomatic group (median S/CO, 205; IQR, 58-382) in the acute phase Of asymptomatic individuals, 933% (28/30) and 811% (30/37) had reduction in IgG and neutralizing antibody levels, respectively, during the early convalescent phase, as compared to 968% (30/31) and 622% (23/37) of symptomatic patients Forty percent of asymptomatic individuals became seronegative and 129% of the symptomatic group became negative for IgG in the early convalescent phase In addition, asymptomatic individuals exhibited lower levels of 18 pro- and anti-inflammatory cytokines These data suggest that asymptomatic individuals had a weaker immune response to SARS-CoV-2 infection The reduction in IgG and neutralizing antibody levels in the early convalescent phase might have implications for immunity strategy and serological surveys

2,463 citations

Journal ArticleDOI
05 Feb 2021-Science
TL;DR: This article analyzed multiple compartments of circulating immune memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 254 samples from 188 COVID-19 cases, including 43 samples at ≥ 6 months after infection.
Abstract: Understanding immune memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for improving diagnostics and vaccines and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥6 months after infection. Immunoglobulin G (IgG) to the spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month after symptom onset. SARS-CoV-2-specific CD4+ T cells and CD8+ T cells declined with a half-life of 3 to 5 months. By studying antibody, memory B cell, CD4+ T cell, and CD8+ T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.

1,980 citations

Journal ArticleDOI
09 Apr 2021-Science
TL;DR: Using a variety of statistical and dynamic modeling approaches, the authors estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants, and a fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases.
Abstract: A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in September 2020 and is rapidly spreading toward fixation. Using a variety of statistical and dynamic modeling approaches, we estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine rollout, COVID-19 hospitalizations and deaths across England in the first 6 months of 2021 were projected to exceed those in 2020. VOC 202012/01 has spread globally and exhibits a similar transmission increase (59 to 74%) in Denmark, Switzerland, and the United States.

1,935 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed and synthesized the available evidence on asymptomatic SARS-CoV-2 infection and found that infected persons who remain as healthy played a significant role in the ongoing pandemic, but their relative number and effect have been uncertain.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the world since the first cases of coronavirus disease 2019 (COVID-19) were observed in December 2019 in Wuhan, China. It has been suspected that infected persons who remain asymptomatic play a significant role in the ongoing pandemic, but their relative number and effect have been uncertain. The authors sought to review and synthesize the available evidence on asymptomatic SARS-CoV-2 infection. Asymptomatic persons seem to account for approximately 40% to 45% of SARS-CoV-2 infections, and they can transmit the virus to others for an extended period, perhaps longer than 14 days. Asymptomatic infection may be associated with subclinical lung abnormalities, as detected by computed tomography. Because of the high risk for silent spread by asymptomatic persons, it is imperative that testing programs include those without symptoms. To supplement conventional diagnostic testing, which is constrained by capacity, cost, and its one-off nature, innovative tactics for public health surveillance, such as crowdsourcing digital wearable data and monitoring sewage sludge, might be helpful.

1,813 citations