scispace - formally typeset
Search or ask a question
Author

Christoph Handschin

Bio: Christoph Handschin is an academic researcher from University of Basel. The author has contributed to research in topics: Skeletal muscle & Coactivator. The author has an hindex of 46, co-authored 139 publications receiving 16364 citations. Previous affiliations of Christoph Handschin include Harvard University & University of Zurich.


Papers
More filters
Journal ArticleDOI
TL;DR: The data indicate that AMPK phosphorylation of PGC-1α initiates many of the important gene regulatory functions of AMPK in skeletal muscle.
Abstract: Activation of AMP-activated kinase (AMPK) in skeletal muscle increases glucose uptake, fatty acid oxidation, and mitochondrial biogenesis by increasing gene expression in these pathways. However, the transcriptional components that are directly targeted by AMPK are still elusive. The peroxisome-proliferator-activated receptor γ coactivator 1α (PGC-1α) has emerged as a master regulator of mitochondrial biogenesis; furthermore, it has been shown that PGC-1α gene expression is induced by exercise and by chemical activation of AMPK in skeletal muscle. Using primary muscle cells and mice deficient in PGC-1α, we found that the effects of AMPK on gene expression of glucose transporter 4, mitochondrial genes, and PGC-1α itself are almost entirely dependent on the function of PGC-1α protein. Furthermore, AMPK phosphorylates PGC-1α directly both in vitro and in cells. These direct phosphorylations of the PGC-1α protein at threonine-177 and serine-538 are required for the PGC-1α-dependent induction of the PGC-1α promoter. These data indicate that AMPK phosphorylation of PGC-1α initiates many of the important gene regulatory functions of AMPK in skeletal muscle.

2,038 citations

Journal ArticleDOI
20 Oct 2006-Cell
TL;DR: Increase in PGC-1alpha levels dramatically protects neural cells in culture from oxidative-stressor-mediated death, providing a potential target for the therapeutic manipulation of these important endogenous toxins.

1,999 citations

Journal ArticleDOI
TL;DR: This work has shown that the PGC-1 coactivators play a critical role in the maintenance of glucose, lipid, and energy homeostasis and are likely involved in the pathogenic conditions such as obesity, diabetes, neurodegeneration, and cardiomyopathy.

1,993 citations

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: It is proposed that the transcriptional coactivator PGC1α controls muscle plasticity, suppresses a broad inflammatory response and mediates the beneficial effects of exercise.
Abstract: Inadequate physical activity is linked to many chronic diseases. But the mechanisms that tie muscle activity to health are unclear. The transcriptional coactivator PGC1alpha has recently been shown to regulate several exercise-associated aspects of muscle function. We propose that this protein controls muscle plasticity, suppresses a broad inflammatory response and mediates the beneficial effects of exercise.

943 citations

Journal ArticleDOI
TL;DR: The high levels of P GC-1α in dark and exercising muscles can explain their resistance to atrophy, and the rapid fall in PGC-1 α during atrophy should enhance the FoxO-dependent loss of muscle mass.
Abstract: Maintaining muscle size and fiber composition requires contractile activity. Increased activity stimulates expression of the transcriptional coactivator PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α), which promotes fiber-type switching from glycolytic toward more oxidative fibers. In response to disuse or denervation, but also in fasting and many systemic diseases, muscles undergo marked atrophy through a common set of transcriptional changes. FoxO family transcription factors play a critical role in this loss of cell protein, and when activated, FoxO3 causes expression of the atrophy-related ubiquitin ligases atrogin-1 and MuRF-1 and profound loss of muscle mass. To understand how exercise might retard muscle atrophy, we investigated the possible interplay between PGC-1α and the FoxO family in regulation of muscle size. Rodent muscles showed a large decrease in PGC-1α mRNA during atrophy induced by denervation as well as by cancer cachexia, diabetes, and renal failure. Furthermore, in transgenic mice overexpressing PGC-1α, denervation and fasting caused a much smaller decrease in muscle fiber diameter and a smaller induction of atrogin-1 and MuRF-1 than in control mice. Increased expression of PGC-1α also increased mRNA for several genes involved in energy metabolism whose expression decreases during atrophy. Transfection of PGC-1α into adult fibers reduced the capacity of FoxO3 to cause fiber atrophy and to bind to and transcribe from the atrogin-1 promoter. Thus, the high levels of PGC-1α in dark and exercising muscles can explain their resistance to atrophy, and the rapid fall in PGC-1α during atrophy should enhance the FoxO-dependent loss of muscle mass.

910 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
14 Dec 2006-Nature
TL;DR: Dysfunction of the immune response and metabolic regulation interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease.
Abstract: Metabolic and immune systems are among the most fundamental requirements for survival. Many metabolic and immune response pathways or nutrient- and pathogen-sensing systems have been evolutionarily conserved throughout species. As a result, immune response and metabolic regulation are highly integrated and the proper function of each is dependent on the other. This interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease. Collectively, these diseases constitute the greatest current threat to global human health and welfare.

7,536 citations

Journal ArticleDOI
TL;DR: Developing more efficient methods to detect frailty and measure its severity in routine clinical practice would greatly inform the appropriate selection of elderly people for invasive procedures or drug treatments and would be the basis for a shift in the care of frail elderly people towards more appropriate goal-directed care.

5,456 citations

Journal ArticleDOI
15 Dec 2006-Cell
TL;DR: RSV's effects were associated with an induction of genes for oxidative phosphorylation and mitochondrial biogenesis and were largely explained by an RSV-mediated decrease in P GC-1alpha acetylation and an increase in PGC-1 alpha activity.

3,740 citations

Journal ArticleDOI
TL;DR: AMP-activated protein kinase conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability.
Abstract: AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability.

3,465 citations