scispace - formally typeset
Search or ask a question
Author

Christoph Linse

Bio: Christoph Linse is an academic researcher from University of Lübeck. The author has contributed to research in topics: Convolutional neural network & Computer science. The author has an hindex of 4, co-authored 9 publications receiving 81 citations. Previous affiliations of Christoph Linse include Norwegian University of Science and Technology.

Papers
More filters
Journal ArticleDOI
11 Jan 2021-Sensors
TL;DR: How well deep learning models trained on chest CT images can diagnose COVID-19 infected people in a fast and automated process is explored and a transfer learning strategy using custom-sized input tailored for each deep architecture to achieve the best performance is proposed.
Abstract: This paper explores how well deep learning models trained on chest CT images can diagnose COVID-19 infected people in a fast and automated process. To this end, we adopted advanced deep network architectures and proposed a transfer learning strategy using custom-sized input tailored for each deep architecture to achieve the best performance. We conducted extensive sets of experiments on two CT image datasets, namely, the SARS-CoV-2 CT-scan and the COVID19-CT. The results show superior performances for our models compared with previous studies. Our best models achieved average accuracy, precision, sensitivity, specificity, and F1-score values of 99.4%, 99.6%, 99.8%, 99.6%, and 99.4% on the SARS-CoV-2 dataset, and 92.9%, 91.3%, 93.7%, 92.2%, and 92.5% on the COVID19-CT dataset, respectively. For better interpretability of the results, we applied visualization techniques to provide visual explanations for the models' predictions. Feature visualizations of the learned features show well-separated clusters representing CT images of COVID-19 and non-COVID-19 cases. Moreover, the visualizations indicate that our models are not only capable of identifying COVID-19 cases but also provide accurate localization of the COVID-19-associated regions, as indicated by well-trained radiologists.

127 citations

Journal ArticleDOI
24 Sep 2019-Sensors
TL;DR: A novel system for ear recognition based on ensembles of deep CNN-based models and more specifically the Visual Geometry Group (VGG)-like network architectures for extracting discriminative deep features from ear images with significant improvements over the recently published results.
Abstract: The recognition performance of visual recognition systems is highly dependent on extracting and representing the discriminative characteristics of image data. Convolutional neural networks (CNNs) have shown unprecedented success in a variety of visual recognition tasks due to their capability to provide in-depth representations exploiting visual image features of appearance, color, and texture. This paper presents a novel system for ear recognition based on ensembles of deep CNN-based models and more specifically the Visual Geometry Group (VGG)-like network architectures for extracting discriminative deep features from ear images. We began by training different networks of increasing depth on ear images with random weight initialization. Then, we examined pretrained models as feature extractors as well as fine-tuning them on ear images. After that, we built ensembles of the best models to further improve the recognition performance. We evaluated the proposed ensembles through identification experiments using ear images acquired under controlled and uncontrolled conditions from mathematical analysis of images (AMI), AMI cropped (AMIC) (introduced here), and West Pomeranian University of Technology (WPUT) ear datasets. The experimental results indicate that our ensembles of models yield the best performance with significant improvements over the recently published results. Moreover, we provide visual explanations of the learned features by highlighting the relevant image regions utilized by the models for making decisions or predictions.

61 citations

Journal ArticleDOI
TL;DR: This paper employs state-of-the-art Deep Convolutional Neural Networks, namely AlexNet, VGGNet, Inception, ResNet and ResNeXt in a first experimental study of ear recognition on the unconstrained EarVN1.0 dataset to utilize transfer learning and propose different domain adaptation strategies.
Abstract: This paper employs state-of-the-art Deep Convolutional Neural Networks (CNNs), namely AlexNet, VGGNet, Inception, ResNet and ResNeXt in a first experimental study of ear recognition on the unconstrained EarVN1.0 dataset. As the dataset size is still insufficient to train deep CNNs from scratch, we utilize transfer learning and propose different domain adaptation strategies. The experiments show that our networks, which are fine-tuned using custom-sized inputs determined specifically for each CNN architecture, obtain state-of-the-art recognition performance where a single ResNeXt101 model achieves a rank-1 recognition accuracy of 93.45%. Moreover, we achieve the best rank-1 recognition accuracy of 95.85% using an ensemble of fine-tuned ResNeXt101 models. In order to explain the performance differences between models and make our results more interpretable, we employ the t-SNE algorithm to explore and visualize the learned features. Feature visualizations show well-separated clusters representing ear images of the different subjects. This indicates that discriminative and ear-specific features are learned when applying our proposed learning strategies.

39 citations

Journal ArticleDOI
08 Dec 2019-Symmetry
TL;DR: This paper presents and compares ear recognition models built with handcrafted and CNN features, and conducts experiments to investigate the symmetry of the left and right ears and the obtained results indicate the existence of a high degree of symmetry between the ears.
Abstract: Ear recognition is an active research area in the biometrics community with the ultimate goal to recognize individuals effectively from ear images. Traditional ear recognition methods based on handcrafted features and conventional machine learning classifiers were the prominent techniques during the last two decades. Arguably, feature extraction is the crucial phase for the success of these methods due to the difficulty in designing robust features to cope with the variations in the given images. Currently, ear recognition research is shifting towards features extracted by Convolutional Neural Networks (CNNs), which have the ability to learn more specific features robust to the wide image variations and achieving state-of-the-art recognition performance. This paper presents and compares ear recognition models built with handcrafted and CNN features. First, we experiment with seven top performing handcrafted descriptors to extract the discriminating ear image features and then train Support Vector Machines (SVMs) on the extracted features to learn a suitable model. Second, we introduce four CNN based models using a variant of the AlexNet architecture. The experimental results on three ear datasets show the superior performance of the CNN based models by 22%. To further substantiate the comparison, we perform visualization of the handcrafted and CNN features using the t-distributed Stochastic Neighboring Embedding (t-SNE) visualization technique and the characteristics of features are discussed. Moreover, we conduct experiments to investigate the symmetry of the left and right ears and the obtained results on two datasets indicate the existence of a high degree of symmetry between the ears, while a fair degree of asymmetry also exists.

35 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed three different transfer learning strategies to address the ear recognition problem, which are either through utilizing the ResNet architectures as feature extractors or through employing end-to-end system designs.
Abstract: This paper presents ear recognition models constructed with Deep Residual Networks (ResNet) of various depths. Due to relatively limited amounts of ear images we propose three different transfer learning strategies to address the ear recognition problem. This is done either through utilizing the ResNet architectures as feature extractors or through employing end-to-end system designs. First, we use pretrained models trained on specific visual recognition tasks, inititalize the network weights and train the fully-connected layer on the ear recognition task. Second, we fine-tune entire pretrained models on the training part of each ear dataset. Third, we utilize the output of the penultimate layer of the fine-tuned ResNet models as feature extractors to feed SVM classifiers. Finally, we build ensembles of networks with various depths to enhance the overall system performance. Extensive experiments are conducted to evaluate the obtained models using ear images acquired under constrained and unconstrained imaging conditions from the AMI, AMIC, WPUT and AWE ear databases. The best performance is obtained by averaging ensembles of fine-tuned networks achieving recognition accuracy of 99.64%, 98.57%, 81.89%, and 67.25% on the AMI, AMIC, WPUT, and AWE databases, respectively. In order to facilitate the interpretation of the obtained results and explain the performance differences on each ear dataset we apply the powerful Guided Grad-CAM technique, which provides visual explanations to unravel the black-box nature of deep models. The provided visualizations highlight the most relevant and discriminative ear regions exploited by the models to differentiate between individuals. Based on our analysis of the localization maps and visualizations we argue that our models make correct prediction when considering the geometrical structure of the ear shape as a discriminative region even with a mild degree of head rotations and the presence of hair occlusion and accessories. However, severe head movements and low contrast images have a negative impact of the recognition performance.

24 citations


Cited by
More filters
Journal ArticleDOI
11 Jan 2021-Sensors
TL;DR: How well deep learning models trained on chest CT images can diagnose COVID-19 infected people in a fast and automated process is explored and a transfer learning strategy using custom-sized input tailored for each deep architecture to achieve the best performance is proposed.
Abstract: This paper explores how well deep learning models trained on chest CT images can diagnose COVID-19 infected people in a fast and automated process. To this end, we adopted advanced deep network architectures and proposed a transfer learning strategy using custom-sized input tailored for each deep architecture to achieve the best performance. We conducted extensive sets of experiments on two CT image datasets, namely, the SARS-CoV-2 CT-scan and the COVID19-CT. The results show superior performances for our models compared with previous studies. Our best models achieved average accuracy, precision, sensitivity, specificity, and F1-score values of 99.4%, 99.6%, 99.8%, 99.6%, and 99.4% on the SARS-CoV-2 dataset, and 92.9%, 91.3%, 93.7%, 92.2%, and 92.5% on the COVID19-CT dataset, respectively. For better interpretability of the results, we applied visualization techniques to provide visual explanations for the models' predictions. Feature visualizations of the learned features show well-separated clusters representing CT images of COVID-19 and non-COVID-19 cases. Moreover, the visualizations indicate that our models are not only capable of identifying COVID-19 cases but also provide accurate localization of the COVID-19-associated regions, as indicated by well-trained radiologists.

127 citations

Journal ArticleDOI
TL;DR: Two different ensemble deep transfer learning models have been designed for COVID-19 diagnosis utilizing the chest X-rays and reveal that the proposed framework outperforms the existing techniques in terms of sensitivity, specificity, and accuracy.
Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes novel coronavirus disease (COVID-19) outbreak in more than 200 countries around the world. The early diagnosis of infected patients is needed to discontinue this outbreak. The diagnosis of coronavirus infection from radiography images is the fastest method. In this paper, two different ensemble deep transfer learning models have been designed for COVID-19 diagnosis utilizing the chest X-rays. Both models have utilized pre-trained models for better performance. They are able to differentiate COVID-19, viral pneumonia, and bacterial pneumonia. Both models have been developed to improve the generalization capability of the classifier for binary and multi-class problems. The proposed models have been tested on two well-known datasets. Experimental results reveal that the proposed framework outperforms the existing techniques in terms of sensitivity, specificity, and accuracy.

89 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a methodology to eliminate unnecessary reflectance properties of the images using a novel image processing schema and a stacked deep learning technique for the diagnosis of diabetic retinopathy.
Abstract: Diabetic retinopathy (DR) is a diabetes complication that affects the eye and can cause damage from mild vision problems to complete blindness. It has been observed that the eye fundus images show various kinds of color aberrations and irrelevant illuminations, which degrade the diagnostic analysis and may hinder the results. In this research, we present a methodology to eliminate these unnecessary reflectance properties of the images using a novel image processing schema and a stacked deep learning technique for the diagnosis. For the luminosity normalization of the image, the gray world color constancy algorithm is implemented which does image desaturation and improves the overall image quality. The effectiveness of the proposed image enhancement technique is evaluated based on the peak signal to noise ratio (PSNR) and mean squared error (MSE) of the normalized image. To develop a deep learning based computer-aided diagnostic system, we present a novel methodology of stacked generalization of convolution neural networks (CNN). Three custom CNN model weights are fed on the top of a single meta-learner classifier, which combines the most optimum weights of the three sub-neural networks to obtain superior metrics of evaluation and robust prediction results. The proposed stacked model reports an overall test accuracy of 97.92% (binary classification) and 87.45% (multi-class classification). Extensive experimental results in terms of accuracy, F-measure, sensitivity, specificity, recall and precision reveal that the proposed methodology of illumination normalization greatly facilitated the deep learning model and yields better results than various state-of-art techniques.

69 citations